Data-augmented patch variational autoencoding generative adversarial networks for rolling bearing fault diagnosis

计算机科学 稳健性(进化) 判别式 对抗制 生成语法 理论(学习稳定性) 人工智能 生成对抗网络 噪音(视频) 断层(地质) 模式识别(心理学) 机器学习 算法 数据挖掘 深度学习 图像(数学) 生物化学 基因 地质学 地震学 化学
作者
Xin Wang,Hongkai Jiang,Yunpeng Liu,Qiao Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055102-055102 被引量:12
标识
DOI:10.1088/1361-6501/acb377
摘要

Abstract Many recent studies have focused on imbalanced rolling bearing data for fault diagnosis. Complementing the imbalance dataset through data augmentation methods excellently solves this problem superior. In this paper, a patch variational autoencoding generative adversarial network (PVAEGAN) is proposed. Firstly, overlap sampling is designed to preprocess the input samples to alleviate noise interference. Secondly, the PVAEGAN is constructed, and the matrix discriminative output of the model allows it to focus on more features of the data during training. Thirdly, a stability-enhancing structure is designed for PVAEGAN to improve the stability of network parameter variations and inter-network stability for better model results. Furthermore, to verify the use of the multi-class comparison method, experiments are conducted. The results indicate that PVAEGAN can augment imbalanced datasets more effectively and with better robustness than other existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翠翠发布了新的文献求助10
1秒前
半山发布了新的文献求助10
2秒前
2秒前
天天快乐应助CO2采纳,获得10
2秒前
隐形曼青应助junzilan采纳,获得10
3秒前
Dksido发布了新的文献求助10
3秒前
4秒前
思源应助卓哥采纳,获得10
4秒前
mysci完成签到,获得积分10
7秒前
8秒前
Quzhengkai发布了新的文献求助10
9秒前
9秒前
10秒前
落寞晓灵完成签到,获得积分10
10秒前
ORAzzz应助翠翠采纳,获得20
11秒前
zoe完成签到,获得积分10
11秒前
习习应助学术小白采纳,获得10
11秒前
12秒前
13秒前
tianny关注了科研通微信公众号
14秒前
14秒前
CO2发布了新的文献求助10
14秒前
桐桐应助zhangscience采纳,获得10
15秒前
求助发布了新的文献求助10
16秒前
buno应助zoe采纳,获得10
17秒前
junzilan发布了新的文献求助10
17秒前
17秒前
细品岁月完成签到 ,获得积分10
17秒前
细心书蕾完成签到 ,获得积分10
18秒前
无花果应助l11x29采纳,获得10
20秒前
20秒前
老詹头发布了新的文献求助10
20秒前
思源应助叫滚滚采纳,获得10
21秒前
22秒前
刘歌完成签到 ,获得积分10
22秒前
阿巡完成签到,获得积分10
22秒前
Chen完成签到,获得积分10
24秒前
LSH970829发布了新的文献求助10
24秒前
哈哈哈完成签到 ,获得积分10
25秒前
汤姆完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808