Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification

过程(计算) 人工神经网络 领域(数学) 计算机科学 实验数据 鉴定(生物学) 迭代和增量开发 机器学习 热的 实验设计 质量(理念) 温度控制 人工智能 控制工程 工程类 物理 数学 软件工程 操作系统 气象学 统计 纯数学 生物 量子力学 植物
作者
Shuheng Liao,Tianju Xue,Jihoon Jeong,Samantha Webster,Kornel F. Ehmann,Jian Cao
出处
期刊:Computational Mechanics [Springer Nature]
卷期号:72 (3): 499-512 被引量:57
标识
DOI:10.1007/s00466-022-02257-9
摘要

Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs and the need of calibrating unknown parameters, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the pretrained model on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jared应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得20
3秒前
大模型应助科研通管家采纳,获得10
3秒前
健壮平灵应助科研通管家采纳,获得20
3秒前
Hello应助科研通管家采纳,获得20
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
wxyshare应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
wxyshare应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
wxyshare应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
光亮鹤完成签到,获得积分20
4秒前
4秒前
4秒前
dwzhang完成签到,获得积分10
4秒前
czl完成签到,获得积分20
5秒前
wanci应助饭小心采纳,获得10
5秒前
隐形的小蚂蚁完成签到,获得积分10
8秒前
liuchang完成签到 ,获得积分10
11秒前
xiaoxi完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901