Image processing and supervised machine learning for retinal microglia characterization in senescence

视网膜 衰老 视网膜 小胶质细胞 人口 生物 神经科学 支持向量机 人工智能 计算机科学 细胞生物学 医学 免疫学 生物化学 环境卫生 炎症
作者
Soyoung Choi,Daniel Hill,Jonathan Young,M. Francesca Cordeiro
出处
期刊:Methods in Cell Biology [Elsevier BV]
卷期号:: 109-125
标识
DOI:10.1016/bs.mcb.2022.12.008
摘要

The process of senescence impairs the function of cells and can ultimately be a key factor in the development of disease. With an aging population, senescence-related diseases are increasing in prevalence. Therefore, understanding the mechanisms of cellular senescence within the central nervous system (CNS), including the retina, may yield new therapeutic pathways to slow or even prevent the development of neuro- and retinal degenerative diseases. One method of probing the changing functions of senescent retinal cells is to observe retinal microglial cells. Their morphological structure may change in response to their surrounding cellular environment. In this chapter, we show how microglial cells in the retina, which are implicated in aging and diseases of the CNS, can be identified, quantified, and classified into five distinct morphotypes using image processing and supervised machine learning algorithms. The process involves dissecting, staining, and mounting mouse retinas, before image capture via fluorescence microscopy. The resulting images can then be classified by morphotype using a support vector machine (SVM) we have recently described showing high accuracy. This SVM model uses shape metrics found to correspond with qualitative descriptions of the shape of each morphotype taken from existing literature. We encourage more objective and widespread use of methods of quantification such as this. We believe automatic delineation of the population of microglial cells in the retina, could potentially lead to their use as retinal imaging biomarkers for disease prediction in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特斩完成签到,获得积分10
刚刚
云霖柒发布了新的文献求助10
刚刚
LOVEMEVOL发布了新的文献求助10
1秒前
1秒前
大眼的平松完成签到,获得积分10
2秒前
杞人忧天发布了新的文献求助10
3秒前
3秒前
汉堡包应助Shandongdaxiu采纳,获得10
3秒前
阿红发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
碧蓝迎南完成签到,获得积分10
4秒前
飞快的语山完成签到,获得积分10
4秒前
4秒前
4秒前
姜饼饼发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
柚子子子子子子完成签到,获得积分10
5秒前
7秒前
小彤发布了新的文献求助10
7秒前
7秒前
7秒前
sherri完成签到 ,获得积分10
7秒前
Fort完成签到,获得积分10
7秒前
单薄铅笔发布了新的文献求助30
7秒前
蚂蚁Y嘿发布了新的文献求助10
8秒前
10秒前
daliu完成签到,获得积分10
10秒前
小冯完成签到,获得积分10
10秒前
abc小淘气完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
维他命完成签到,获得积分10
11秒前
jinzejin完成签到,获得积分10
11秒前
英姑应助杞人忧天采纳,获得10
11秒前
彭于晏应助千里采纳,获得10
11秒前
12秒前
清脆的芷卉完成签到,获得积分20
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771