Recent advances in plasma-enabled ammonia synthesis: state-of-the-art, challenges, and outlook

可再生能源 催化作用 化石燃料 氨生产 等离子体 纳米技术 非热等离子体 零排放 化学 环境科学 工艺工程 生化工程 材料科学 废物管理 物理 电气工程 有机化学 工程类 量子力学
作者
Xin Zeng,Shuai Zhang,Xiucui Hu,Cheng Zhang,Kostya Ostrikov,Tao Shao
出处
期刊:Faraday Discussions [Royal Society of Chemistry]
卷期号:243: 473-491 被引量:9
标识
DOI:10.1039/d3fd00006k
摘要

With the increase in the greenhouse effect and reduction of fossil fuel resources, it is urgent to find a feasible solution to directly convert power to chemicals using renewable energy and achieving zero carbon emissions targets. It is necessary to convert renewable energy (i.e., solar, wind, water, etc.) into electrical power replacing fossil-fuel-fired power. Therefore, the power-to-chemicals approach is gaining more and more attention. In the past two decades, non-thermal plasma, electro-catalysis, photo-catalysis, and their hybrid approaches have shown great potential for the power-to-chemicals solution. This paper introduces the application of plasma technology in energy conversion, focusing on three main routes for plasma-enabled ammonia synthesis, and analyses the state-of-the-art. Research results of ammonia synthesis based on plasma technology are discussed. The application of advanced in situ diagnostics evidences the importance of specific intermediate species and reaction pathways. Electrons, vibrationally-excited species, free radicals, and surface-adsorbed species play important roles in plasma-catalytic ammonia synthesis. Combined with experiments and simulations, the mechanisms of plasma-catalytic ammonia synthesis are examined. Vibrationally-excited species can effectively reduce the catalytic surface energy barrier. The techno-economics of the plasma-enabled ammonia synthesis technology is discussed in view of its competitive advantages. It is emphasized that the power-to-chemicals approach can be adapted for most chemical manufacturers, and these methods would play crucial roles in reducing carbon emissions and environmental pollution. Finally, suggestions are provided for the sustainable development of the power-to-chemicals industry in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
266完成签到 ,获得积分10
刚刚
highting发布了新的文献求助10
1秒前
1秒前
舒服的鱼完成签到 ,获得积分10
1秒前
对手完成签到 ,获得积分10
2秒前
LinHan发布了新的文献求助10
3秒前
领导范儿应助魔幻的盼秋采纳,获得10
3秒前
鲑鱼完成签到 ,获得积分10
3秒前
Lm发布了新的文献求助10
4秒前
5秒前
5秒前
Angie发布了新的文献求助10
5秒前
想吃冰激凌么完成签到 ,获得积分20
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
www应助科研通管家采纳,获得10
7秒前
李健应助muyu采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
10秒前
11秒前
CipherSage应助Pyrene采纳,获得10
11秒前
时尚初柳发布了新的文献求助10
12秒前
13秒前
14秒前
善良断缘完成签到 ,获得积分10
14秒前
johnny完成签到,获得积分10
14秒前
彭于彦祖应助满意的破茧采纳,获得30
14秒前
叶子完成签到,获得积分10
15秒前
15秒前
兮槿完成签到,获得积分10
17秒前
打打应助Seventeen采纳,获得10
17秒前
18秒前
现实的中蓝完成签到,获得积分10
18秒前
搜集达人应助吴珍采纳,获得30
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460