全球导航卫星系统应用
扩展卡尔曼滤波器
卡尔曼滤波器
控制理论(社会学)
惯性导航系统
计算机科学
卫星系统
协方差矩阵
协方差
高斯分布
导航系统
数学
算法
全球定位系统
实时计算
统计
人工智能
电信
物理
量子力学
控制(管理)
方向(向量空间)
几何学
作者
Sina Taghizadeh,Reza Safabakhsh
出处
期刊:Journal of Navigation
[Cambridge University Press]
日期:2023-01-01
卷期号:76 (1): 1-19
被引量:2
标识
DOI:10.1017/s0373463322000583
摘要
Abstract We proposed an adaptive H-infinity Cubature Kalman Filter (AH∞CKF) to improve the navigation accuracy of a highly manoeuvrable unmanned aerial vehicle (UAV). AH∞CKF fuses the Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) measurements. Traditional state estimation filters like extended Kalman filters (EKF) and cubature Kalman filters (CKF) assume Gaussian noises. However, their performance degrades for non-Gaussian noises and system uncertainties encountered in real-world applications. Thus, designing filters robust to noise and distribution is crucial. AH∞CKF combines H∞CKF design with an added adaptive factor to adjust the state estimation covariance matrix according to measurements by exploiting the square root method to yield more numerically stable results (SrAH∞CKF). We conducted multiple dynamically rich flight tests to validate our claims using a UAV equipped with a commercially well-known GNSS solution. Results show that the SrAH∞CKF state estimation outperforms EKF and CKF methods on average by 90% in various statistical measures.
科研通智能强力驱动
Strongly Powered by AbleSci AI