The molecular basis for dysfunctional bacterial lipopolysaccharide-mediated immune receptor activation by SARS-CoV-2 spike

脂多糖 TLR4型 CD14型 先天免疫系统 免疫系统 败血症 生物 免疫学 Toll样受体 受体 TLR2型 细胞生物学 生物化学
作者
Firdaus Samsudin,Venkata Raghuvamsi Palur,Ganna Petruk,Manoj Puthia,Jitka Petrlová,Paul A. MacAry,Ganesh S. Anand,Artur Schmidtchen,Peter J. Bond
出处
期刊:Biophysical Journal [Elsevier]
卷期号:122 (3): 502a-502a
标识
DOI:10.1016/j.bpj.2022.11.2679
摘要

SARS-CoV-2 has caused hundreds of millions of COVID-19 infections worldwide. While COVID-19 presents with various clinical manifestations, severe COVID-19 disease causes dysregulated host immune reactions that trigger onset of sepsis and acute respiratory distress syndrome. Accumulating evidence suggests that lipopolysaccharide (LPS) derived from the outer membranes of Gram-negative bacteria plays an instrumental role in the progression of such inflammatory states. Patients with pre-existing conditions such as diabetes, hypertension, and obesity are at higher risk to develop severe COVID-19 disease and tend to have significantly elevated blood LPS levels. LPS serves as a signal of bacterial infection upon recognition by Toll-like receptor (TLR4) of the innate immune system, but this can also result in over-amplified immune reactions and sepsis. Here, we present the results of molecular simulations and free-energy calculations, supported by in vitro and in vivo assays and hydrogen-deuterium exchange mass spectrometry experiments, which reveal the molecular mechanism by which the envelope spike glycoprotein of SARS-CoV-2 augments hyperinflammation by acting as a conduit in the TLR4 pathway. LPS was found to bind to several conserved pockets on spike across S1 and S2 subunits. S1 affinity for LPS was comparable to that of CD14, a co-receptor used by immune cells to transfer LPS to TLR4. Cell-based assays and reporter mice experiments showed that low concentrations of spike and LPS synergistically induce a strong pro-inflammatory response, thus pinpointing spike's capacity to “boost” innate immune activation. Finally, the loss of a high-affinity binding site in the Omicron spike led to a reduction of its “boosting” capacity, which may translate to the less severe inflammation observed in patients infected with this variant. Collectively, our findings highlight the potential impact of elevated LPS levels and Gram-negative bacterial coinfections in severe COVID-19 complications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李发行应助sana采纳,获得20
刚刚
nn发布了新的文献求助10
1秒前
英俊的铭应助Ternura采纳,获得10
1秒前
1秒前
123456发布了新的文献求助10
2秒前
长心完成签到,获得积分10
2秒前
Ann完成签到,获得积分10
2秒前
复杂白风完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
rangergzz应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Akim应助暮夏钟鼓采纳,获得10
3秒前
一只科研混子完成签到 ,获得积分10
4秒前
4秒前
习惯完成签到,获得积分20
6秒前
陈法国发布了新的文献求助10
6秒前
9秒前
XL发布了新的文献求助10
9秒前
在水一方应助fengqianxv采纳,获得10
10秒前
10秒前
大模型应助Paddi采纳,获得10
11秒前
科研通AI2S应助123456采纳,获得10
12秒前
科研通AI2S应助陈法国采纳,获得10
12秒前
Tricia发布了新的文献求助30
15秒前
苗条的紫文完成签到,获得积分20
16秒前
17秒前
19秒前
19秒前
goodsheep完成签到 ,获得积分10
20秒前
1257应助孙小雨采纳,获得10
20秒前
言不得语发布了新的文献求助10
21秒前
21秒前
21秒前
喷泡的兔子完成签到,获得积分10
22秒前
机智的天天完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194