已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

It is Not “Accuracy vs. Explainability”—We Need Both for Trustworthy AI Systems

可信赖性 计算机科学 人工智能 计算机安全
作者
Dragutin Petković
出处
期刊:IEEE transactions on technology and society [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 46-53 被引量:23
标识
DOI:10.1109/tts.2023.3239921
摘要

We are witnessing the emergence of an "AI economy and society" where AI technologies and applications are increasingly impacting health care, business, transportation, defense and many aspects of everyday life. Many successes have been reported where AI systems even surpassed the accuracy of human experts. However, AI systems may produce errors, can exhibit bias, may be sensitive to noise in the data, and often lack technical and judicial transparency resulting in reduction in trust and challenges to their adoption. These recent shortcomings and concerns have been documented in both the scientific and general press such as accidents with self-driving cars, biases in healthcare or hiring and face recognition systems for people of color, and seemingly correct decisions later found to be made due to wrong reasons etc. This has resulted in the emergence of many government and regulatory initiatives requiring trustworthy and ethical AI to provide accuracy and robustness, some form of explainability, human control and oversight, elimination of bias, judicial transparency and safety. The challenges in delivery of trustworthy AI systems have motivated intense research on explainable AI systems (XAI). The original aim of XAI is to provide human understandable information of how AI systems make their decisions in order to increase user trust. In this paper we first very briefly summarize current XAI work and then challenge the recent arguments that present "accuracy vs. explainability" as being mutually exclusive and for focusing mainly on deep learning with its limited XAI capabilities. We then present our recommendations for the broad use of XAI in all stages of delivery of high stakes trustworthy AI systems, e.g., development; validation/certification; and trustworthy production and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助112333采纳,获得80
3秒前
9秒前
Leon应助外向不愁采纳,获得10
10秒前
21秒前
KDS完成签到,获得积分10
23秒前
人生天地间完成签到,获得积分10
26秒前
俯冲食堂发布了新的文献求助10
26秒前
KDS发布了新的文献求助10
28秒前
汉堡包应助yuiip采纳,获得10
28秒前
Hqing完成签到 ,获得积分10
29秒前
helpme完成签到,获得积分10
29秒前
彭于晏应助人生天地间采纳,获得10
33秒前
33秒前
福同学完成签到,获得积分10
36秒前
M远关注了科研通微信公众号
39秒前
39秒前
41秒前
乐观碧灵发布了新的文献求助10
43秒前
yuiip发布了新的文献求助10
45秒前
51秒前
11128完成签到 ,获得积分10
54秒前
hongyi完成签到,获得积分10
55秒前
动听的藏花完成签到 ,获得积分10
55秒前
SYLH应助研友_8R5zBZ采纳,获得10
58秒前
1分钟前
1分钟前
乐观碧灵完成签到,获得积分10
1分钟前
1分钟前
M远发布了新的文献求助10
1分钟前
shl发布了新的文献求助30
1分钟前
wenwen发布了新的文献求助10
1分钟前
科研通AI5应助shl采纳,获得10
1分钟前
YJM应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
Yen应助科研通管家采纳,获得20
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得20
1分钟前
宋江他大表哥完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803