Fast fluid–structure interaction simulation method based on deep learning flow field modeling

计算机科学 领域(数学) 流固耦合 流体力学 机械 物理 有限元法 数学 纯数学 热力学
作者
Jiawei Hu,Zihao Dou,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:4
标识
DOI:10.1063/5.0200188
摘要

The rapid acquisition of high-fidelity flow field information is of great significance for engineering applications such as multi-field coupling. Current research in flow field modeling predominantly focuses on low Reynolds numbers and periodic flows, exhibiting weak generalization capabilities and notable issues with temporal inferring error accumulation. Therefore, we establish a reduced order model (ROM) based on Convolutional Auto-Encoder (CAE) and Long Short-Term Memory (LSTM) neural network and propose an unsteady flow field modeling method for the airfoil with a high Reynolds number and strong nonlinear characteristics. The attention mechanism and weak physical constraints are integrated into the model architecture to improve the modeling accuracy. A broadband excitation training strategy is proposed to overcome the error accumulation problem of long-term inferring. With only a small amount of latent codes, the relative error of the flow field reconstructed by CAE can be less than 5‰. By training LSTM with broadband excitation signals, stable dynamic evolution can be achieved in the time dimension. CAE-LSTM can accurately predict the forced response and complex limit cycle behavior of the airfoil in a wide range of amplitude and frequency under subsonic/transonic conditions. The relative errors of predicted variables and integral force are less than 1%. The fluid–structure interaction framework is built by coupling the ROM and motion equations of the structure. CAE-LSTM predicts the time series response of pitch displacement and moment coefficient at different reduced frequencies, which is in good agreement with computational fluid dynamics, and the simulation time savings exceed one order of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yn发布了新的文献求助10
1秒前
九久完成签到,获得积分10
1秒前
1秒前
善学以致用应助乐乐采纳,获得10
1秒前
akun完成签到,获得积分10
1秒前
领导范儿应助small采纳,获得10
2秒前
2秒前
2秒前
啦啦啦发布了新的文献求助10
2秒前
星辰大海应助scc采纳,获得30
3秒前
个性迎彤完成签到,获得积分10
3秒前
GangWu发布了新的文献求助10
3秒前
3秒前
4秒前
鱼鱼鱼完成签到 ,获得积分10
4秒前
trick完成签到,获得积分10
4秒前
小芙爱雪碧完成签到 ,获得积分10
4秒前
狄孱发布了新的文献求助10
5秒前
5秒前
dxj发布了新的文献求助30
5秒前
6秒前
丘比特应助sabe采纳,获得10
6秒前
6秒前
凌代萱发布了新的文献求助100
7秒前
zxy发布了新的文献求助10
7秒前
7秒前
如沐风完成签到,获得积分10
8秒前
0908发布了新的文献求助10
8秒前
8秒前
上官若男应助酸奶七采纳,获得10
8秒前
xixi626发布了新的文献求助20
8秒前
Jun给ohhhh的求助进行了留言
8秒前
trick发布了新的文献求助10
9秒前
科研通AI2S应助yn采纳,获得10
9秒前
10秒前
超甜大西瓜完成签到,获得积分10
11秒前
komorebi发布了新的文献求助10
11秒前
如沐风发布了新的文献求助10
11秒前
思源应助在郑州采纳,获得10
11秒前
大模型应助在郑州采纳,获得10
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919