Fast fluid–structure interaction simulation method based on deep learning flow field modeling

计算机科学 领域(数学) 流固耦合 流体力学 机械 物理 有限元法 数学 纯数学 热力学
作者
Jiawei Hu,Zihao Dou,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:13
标识
DOI:10.1063/5.0200188
摘要

The rapid acquisition of high-fidelity flow field information is of great significance for engineering applications such as multi-field coupling. Current research in flow field modeling predominantly focuses on low Reynolds numbers and periodic flows, exhibiting weak generalization capabilities and notable issues with temporal inferring error accumulation. Therefore, we establish a reduced order model (ROM) based on Convolutional Auto-Encoder (CAE) and Long Short-Term Memory (LSTM) neural network and propose an unsteady flow field modeling method for the airfoil with a high Reynolds number and strong nonlinear characteristics. The attention mechanism and weak physical constraints are integrated into the model architecture to improve the modeling accuracy. A broadband excitation training strategy is proposed to overcome the error accumulation problem of long-term inferring. With only a small amount of latent codes, the relative error of the flow field reconstructed by CAE can be less than 5‰. By training LSTM with broadband excitation signals, stable dynamic evolution can be achieved in the time dimension. CAE-LSTM can accurately predict the forced response and complex limit cycle behavior of the airfoil in a wide range of amplitude and frequency under subsonic/transonic conditions. The relative errors of predicted variables and integral force are less than 1%. The fluid–structure interaction framework is built by coupling the ROM and motion equations of the structure. CAE-LSTM predicts the time series response of pitch displacement and moment coefficient at different reduced frequencies, which is in good agreement with computational fluid dynamics, and the simulation time savings exceed one order of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kitty完成签到,获得积分10
刚刚
wu完成签到,获得积分10
刚刚
1351567822应助xueshu采纳,获得50
刚刚
刚刚
Jasper应助xmy采纳,获得10
刚刚
LLL完成签到,获得积分10
1秒前
荣荣发布了新的文献求助10
1秒前
1秒前
Jasper应助LXF采纳,获得10
1秒前
1秒前
脑洞疼应助奥润之采纳,获得10
2秒前
yourenpkma123完成签到,获得积分10
2秒前
2秒前
科目三应助zjr@keyantong采纳,获得10
2秒前
555发布了新的文献求助10
2秒前
聪明帅哥发布了新的文献求助10
3秒前
3秒前
YIQING发布了新的文献求助30
3秒前
喵喵发布了新的文献求助10
4秒前
欢乐谷完成签到,获得积分10
4秒前
火星上的摩托完成签到,获得积分10
4秒前
orixero应助dumplong采纳,获得10
5秒前
www发布了新的文献求助10
6秒前
小羊耶啵发布了新的文献求助20
6秒前
王jh完成签到 ,获得积分10
6秒前
香蕉觅云应助马成双采纳,获得10
6秒前
陈先生de猫完成签到,获得积分20
6秒前
sc完成签到,获得积分10
6秒前
顾矜应助搔扒采纳,获得10
6秒前
3093284979完成签到,获得积分10
6秒前
完美世界应助H星科23456采纳,获得10
6秒前
7秒前
7秒前
SciGPT应助gaochanglu采纳,获得10
9秒前
9秒前
9秒前
10秒前
kljlk发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
小铭同学关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721