Fast fluid–structure interaction simulation method based on deep learning flow field modeling

计算机科学 领域(数学) 流固耦合 流体力学 机械 物理 有限元法 数学 纯数学 热力学
作者
Jiawei Hu,Zihao Dou,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4) 被引量:13
标识
DOI:10.1063/5.0200188
摘要

The rapid acquisition of high-fidelity flow field information is of great significance for engineering applications such as multi-field coupling. Current research in flow field modeling predominantly focuses on low Reynolds numbers and periodic flows, exhibiting weak generalization capabilities and notable issues with temporal inferring error accumulation. Therefore, we establish a reduced order model (ROM) based on Convolutional Auto-Encoder (CAE) and Long Short-Term Memory (LSTM) neural network and propose an unsteady flow field modeling method for the airfoil with a high Reynolds number and strong nonlinear characteristics. The attention mechanism and weak physical constraints are integrated into the model architecture to improve the modeling accuracy. A broadband excitation training strategy is proposed to overcome the error accumulation problem of long-term inferring. With only a small amount of latent codes, the relative error of the flow field reconstructed by CAE can be less than 5‰. By training LSTM with broadband excitation signals, stable dynamic evolution can be achieved in the time dimension. CAE-LSTM can accurately predict the forced response and complex limit cycle behavior of the airfoil in a wide range of amplitude and frequency under subsonic/transonic conditions. The relative errors of predicted variables and integral force are less than 1%. The fluid–structure interaction framework is built by coupling the ROM and motion equations of the structure. CAE-LSTM predicts the time series response of pitch displacement and moment coefficient at different reduced frequencies, which is in good agreement with computational fluid dynamics, and the simulation time savings exceed one order of magnitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
失眠奥特曼完成签到,获得积分10
1秒前
俟天晴发布了新的文献求助10
1秒前
1秒前
1秒前
lily发布了新的文献求助10
1秒前
Liufgui应助abuse采纳,获得30
2秒前
随便发布了新的文献求助10
2秒前
2秒前
四月发布了新的文献求助10
2秒前
SciGPT应助流萤采纳,获得10
2秒前
核桃发布了新的文献求助10
3秒前
4秒前
在水一方应助TINA采纳,获得10
4秒前
wmszhd完成签到,获得积分10
5秒前
Gilana发布了新的文献求助10
5秒前
5秒前
FashionBoy应助Yanz采纳,获得10
6秒前
小蘑菇应助WL露儿采纳,获得10
6秒前
zn315315发布了新的文献求助10
6秒前
陈陈发布了新的文献求助10
6秒前
valentin完成签到,获得积分10
6秒前
思维隋发布了新的文献求助10
7秒前
导不帮俺找俺莫法子嘞关注了科研通微信公众号
7秒前
FashionBoy应助回鱼采纳,获得10
7秒前
7秒前
samuel发布了新的文献求助10
7秒前
大个应助yyye采纳,获得20
8秒前
8秒前
科目三应助加油冲冲冲采纳,获得10
8秒前
思源应助李芬采纳,获得10
8秒前
kkm发布了新的文献求助10
9秒前
9秒前
xiaohong发布了新的文献求助10
10秒前
研友_VZG7GZ应助王哪儿跑0_0采纳,获得10
11秒前
11秒前
11秒前
12秒前
健康的海发布了新的文献求助10
14秒前
Lee发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126