GCMSFormer: A Fully Automatic Method for the Resolution of Overlapping Peaks in Gas Chromatography–Mass Spectrometry

质谱法 色谱法 分辨率(逻辑) 气相色谱法 化学 二维气体 数据集 分析化学(期刊) 模式识别(心理学) 计算机科学 人工智能
作者
Zixuan Guo,Yingjie Fan,Chuanxiu Yu,Hongmei Lü,Zhimin Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (15): 5878-5886 被引量:2
标识
DOI:10.1021/acs.analchem.3c05772
摘要

Gas chromatography–mass spectrometry (GC–MS) is one of the most important instruments for analyzing volatile organic compounds. However, the complexity of real samples and the limitations of chromatographic separation capabilities lead to coeluting compounds without ideal separation. In this study, a Transformer-based automatic resolution method (GCMSFormer) is proposed to resolve mass spectra from GC–MS peaks in an end-to-end manner, predicting the mass spectra of components directly from the raw overlapping peaks data. Furthermore, orthogonal projection resolution (OPR) was integrated into GCMSFormer to resolve minor components. The GCMSFormer model was trained, validated, and tested using 100,000 augmented data. It achieves 99.88% of the bilingual evaluation understudy (BLEU) value on the test set, significantly higher than the 97.68% BLEU value of the baseline sequence-to-sequence model long short-term memory (LSTM). GCMSFormer was also compared with two nondeep learning resolution tools (MZmine and AMDIS) and two deep learning resolution tools (PARAFAC2 with DL and MSHub/GNPS) on a real plant essential oil GC–MS data set. Their resolution results were compared on evaluation metrics, including the number of compounds resolved, mass spectral match score, correlation coefficient, explained variance, and resolution speed. The results demonstrate that GCMSFormer has better resolution performance, higher automation, and faster resolution speed. In summary, GCMSFormer is an end-to-end, fast, fully automatic, and accurate method for analyzing GC–MS data of complex samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pony发布了新的文献求助10
刚刚
紧张的妖妖完成签到 ,获得积分20
1秒前
温暖凡灵完成签到,获得积分10
1秒前
1秒前
1秒前
lz发布了新的文献求助10
2秒前
慕青应助aaa采纳,获得10
3秒前
科研狗完成签到 ,获得积分20
3秒前
water应助LJQ采纳,获得10
3秒前
3秒前
博修发布了新的文献求助10
3秒前
5秒前
归尘发布了新的文献求助10
5秒前
科研小白121212完成签到,获得积分10
6秒前
zhengzheng发布了新的文献求助10
6秒前
cllcx完成签到,获得积分10
7秒前
天天快乐应助aaiirrii采纳,获得30
7秒前
木子发布了新的文献求助10
7秒前
8秒前
tttp完成签到,获得积分10
8秒前
9秒前
9秒前
内向远侵完成签到,获得积分10
10秒前
爆米花应助cllcx采纳,获得10
10秒前
11秒前
果实发布了新的文献求助10
12秒前
DQY完成签到,获得积分10
12秒前
13秒前
貔貅发布了新的文献求助20
13秒前
Wkk发布了新的文献求助30
14秒前
WW完成签到 ,获得积分10
14秒前
jyy应助芋泥啵啵采纳,获得10
14秒前
Jasper应助俊逸的咖啡采纳,获得10
15秒前
顾矜应助明亮的忆灵采纳,获得10
15秒前
15秒前
七月半发布了新的文献求助10
15秒前
16秒前
fang发布了新的文献求助10
16秒前
5High_0完成签到 ,获得积分10
16秒前
letter完成签到 ,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149