2.5D UNet with context-aware feature sequence fusion for accurate esophageal tumor semantic segmentation

背景(考古学) 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 分割 序列(生物学) 豪斯多夫距离 轮廓 计算机视觉 古生物学 哲学 语言学 遗传学 计算机图形学(图像) 生物
作者
Kai Xü,Feixiang Zhang,Yong Huang,Xiaoyu Huang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (8): 085002-085002
标识
DOI:10.1088/1361-6560/ad3419
摘要

Abstract Segmenting esophageal tumor from computed tomography (CT) sequence images can assist doctors in diagnosing and treating patients with this malignancy. However, accurately extracting esophageal tumor features from CT images often present challenges due to their small area, variable position, and shape, as well as the low contrast with surrounding tissues. This results in not achieving the level of accuracy required for practical applications in current methods. To address this problem, we propose a 2.5D context-aware feature sequence fusion UNet (2.5D CFSF-UNet) model for esophageal tumor segmentation in CT sequence images. Specifically, we embed intra-slice multiscale attention feature fusion (Intra-slice MAFF) in each skip connection of UNet to improve feature learning capabilities, better expressing the differences between anatomical structures within CT sequence images. Additionally, the inter-slice context fusion block (Inter-slice CFB) is utilized in the center bridge of UNet to enhance the depiction of context features between CT slices, thereby preventing the loss of structural information between slices. Experiments are conducted on a dataset of 430 esophageal tumor patients. The results show an 87.13% dice similarity coefficient, a 79.71% intersection over union and a 2.4758 mm Hausdorff distance, which demonstrates that our approach can improve contouring consistency and can be applied to clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大聪明完成签到,获得积分10
刚刚
与共完成签到 ,获得积分10
1秒前
1秒前
西门放狗发布了新的文献求助10
1秒前
2秒前
DAN完成签到,获得积分10
2秒前
传奇3应助chum555采纳,获得10
3秒前
3秒前
Hello应助炊饼采纳,获得10
5秒前
健壮元绿完成签到 ,获得积分10
6秒前
hs完成签到,获得积分10
6秒前
蔡徐坤发布了新的文献求助10
6秒前
6秒前
7秒前
超帅沂发布了新的文献求助10
7秒前
7秒前
Raylihuang应助zho采纳,获得10
10秒前
善学以致用应助zho采纳,获得10
11秒前
Lucas应助zho采纳,获得10
11秒前
JamesPei应助zho采纳,获得10
11秒前
SciGPT应助zho采纳,获得10
11秒前
结实的小土豆完成签到 ,获得积分10
14秒前
15秒前
17秒前
打打应助zpy采纳,获得10
17秒前
大脑袋媛媛完成签到,获得积分20
18秒前
QQQ发布了新的文献求助10
20秒前
20秒前
lingo发布了新的文献求助10
20秒前
20秒前
健壮元绿发布了新的文献求助10
22秒前
wroy完成签到,获得积分10
22秒前
zZ发布了新的文献求助10
22秒前
科目三应助zho采纳,获得10
24秒前
Lucas应助zho采纳,获得10
24秒前
千里共婵娟应助zho采纳,获得20
24秒前
希望天下0贩的0应助zho采纳,获得10
24秒前
善学以致用应助zho采纳,获得10
24秒前
在水一方应助zho采纳,获得10
24秒前
坚强的严青应助zho采纳,获得30
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112