2.5D UNet with context-aware feature sequence fusion for accurate esophageal tumor semantic segmentation

背景(考古学) 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 分割 序列(生物学) 豪斯多夫距离 轮廓 计算机视觉 古生物学 哲学 语言学 遗传学 计算机图形学(图像) 生物
作者
Kai Xü,Feixiang Zhang,Yong Huang,Xiaoyu Huang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (8): 085002-085002 被引量:3
标识
DOI:10.1088/1361-6560/ad3419
摘要

Abstract Segmenting esophageal tumor from computed tomography (CT) sequence images can assist doctors in diagnosing and treating patients with this malignancy. However, accurately extracting esophageal tumor features from CT images often present challenges due to their small area, variable position, and shape, as well as the low contrast with surrounding tissues. This results in not achieving the level of accuracy required for practical applications in current methods. To address this problem, we propose a 2.5D context-aware feature sequence fusion UNet (2.5D CFSF-UNet) model for esophageal tumor segmentation in CT sequence images. Specifically, we embed intra-slice multiscale attention feature fusion (Intra-slice MAFF) in each skip connection of UNet to improve feature learning capabilities, better expressing the differences between anatomical structures within CT sequence images. Additionally, the inter-slice context fusion block (Inter-slice CFB) is utilized in the center bridge of UNet to enhance the depiction of context features between CT slices, thereby preventing the loss of structural information between slices. Experiments are conducted on a dataset of 430 esophageal tumor patients. The results show an 87.13% dice similarity coefficient, a 79.71% intersection over union and a 2.4758 mm Hausdorff distance, which demonstrates that our approach can improve contouring consistency and can be applied to clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷云朵完成签到,获得积分10
1秒前
爱lx完成签到,获得积分10
2秒前
醉熏的井完成签到,获得积分10
3秒前
科研通AI2S应助张弼玥采纳,获得30
4秒前
默默的青旋完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Lucas应助沈云川采纳,获得10
5秒前
6秒前
7秒前
科目三应助火星上安筠采纳,获得10
7秒前
醉熏的井发布了新的文献求助20
8秒前
10秒前
光亮的健柏完成签到,获得积分20
11秒前
慕青应助CALM采纳,获得10
11秒前
12秒前
狂野静曼完成签到,获得积分10
13秒前
13秒前
nn发布了新的文献求助10
14秒前
小小发布了新的文献求助10
14秒前
15秒前
17秒前
Gouki完成签到 ,获得积分10
17秒前
彭于晏应助小静采纳,获得30
20秒前
20秒前
21秒前
研友_VZG7GZ应助谢嘻嘻嘻嘻采纳,获得10
21秒前
22秒前
李爱国应助科研通管家采纳,获得30
22秒前
斯文败类应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得30
23秒前
嘿嘿应助科研通管家采纳,获得10
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得30
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602790
求助须知:如何正确求助?哪些是违规求助? 4687992
关于积分的说明 14851935
捐赠科研通 4685938
什么是DOI,文献DOI怎么找? 2540226
邀请新用户注册赠送积分活动 1506857
关于科研通互助平台的介绍 1471450