2.5D UNet with context-aware feature sequence fusion for accurate esophageal tumor semantic segmentation

背景(考古学) 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 分割 序列(生物学) 豪斯多夫距离 轮廓 计算机视觉 古生物学 哲学 语言学 遗传学 计算机图形学(图像) 生物
作者
Kai Xü,Feixiang Zhang,Yong Huang,Xiaoyu Huang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (8): 085002-085002 被引量:3
标识
DOI:10.1088/1361-6560/ad3419
摘要

Abstract Segmenting esophageal tumor from computed tomography (CT) sequence images can assist doctors in diagnosing and treating patients with this malignancy. However, accurately extracting esophageal tumor features from CT images often present challenges due to their small area, variable position, and shape, as well as the low contrast with surrounding tissues. This results in not achieving the level of accuracy required for practical applications in current methods. To address this problem, we propose a 2.5D context-aware feature sequence fusion UNet (2.5D CFSF-UNet) model for esophageal tumor segmentation in CT sequence images. Specifically, we embed intra-slice multiscale attention feature fusion (Intra-slice MAFF) in each skip connection of UNet to improve feature learning capabilities, better expressing the differences between anatomical structures within CT sequence images. Additionally, the inter-slice context fusion block (Inter-slice CFB) is utilized in the center bridge of UNet to enhance the depiction of context features between CT slices, thereby preventing the loss of structural information between slices. Experiments are conducted on a dataset of 430 esophageal tumor patients. The results show an 87.13% dice similarity coefficient, a 79.71% intersection over union and a 2.4758 mm Hausdorff distance, which demonstrates that our approach can improve contouring consistency and can be applied to clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h哈完成签到,获得积分10
刚刚
思源应助饱满的毛巾采纳,获得10
1秒前
1秒前
深情安青应助hhh采纳,获得10
1秒前
小二郎应助Omelette采纳,获得10
1秒前
asdfzxcv应助避橙采纳,获得10
1秒前
1秒前
顾乐乐完成签到,获得积分10
1秒前
galaa发布了新的文献求助10
2秒前
2秒前
Mm林完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
科研通AI6应助子凯采纳,获得10
4秒前
4秒前
dusum完成签到,获得积分10
4秒前
mengzhao发布了新的文献求助10
6秒前
6秒前
6秒前
折枝念晚宁完成签到,获得积分10
6秒前
哟呵大鱼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
thia发布了新的文献求助10
7秒前
7秒前
文献dog发布了新的文献求助10
8秒前
高兴宝贝完成签到 ,获得积分10
8秒前
cheng123完成签到,获得积分10
8秒前
lxp发布了新的文献求助10
8秒前
吴军霄完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
LJY发布了新的文献求助10
9秒前
科研通AI6应助薄荷采纳,获得10
9秒前
梦XING发布了新的文献求助10
10秒前
刘雨桐完成签到,获得积分10
10秒前
ding应助Camille采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956