Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 399-407 被引量:1
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
小杭76应助wanna采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
lu完成签到 ,获得积分10
1秒前
chenling发布了新的文献求助10
2秒前
2秒前
FashionBoy应助无情的宛儿采纳,获得10
3秒前
3秒前
龙思甜完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
Whh完成签到,获得积分10
5秒前
5秒前
5秒前
hp发布了新的文献求助10
5秒前
深情安青应助能干智宸采纳,获得10
5秒前
国医大师陈XX完成签到 ,获得积分20
5秒前
MZY应助黄静采纳,获得20
6秒前
小小发布了新的文献求助10
6秒前
Eid完成签到,获得积分10
6秒前
苏小猫发布了新的文献求助10
6秒前
小满xiaoman发布了新的文献求助10
6秒前
高宫璇完成签到,获得积分10
8秒前
C女士完成签到 ,获得积分10
8秒前
Whh发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
yosh发布了新的文献求助10
9秒前
10秒前
科研通AI6应助Jindyla采纳,获得30
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406763
求助须知:如何正确求助?哪些是违规求助? 4524486
关于积分的说明 14098816
捐赠科研通 4438353
什么是DOI,文献DOI怎么找? 2436203
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340