Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 399-407 被引量:1
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
成成成发布了新的文献求助10
1秒前
2秒前
大模型应助李庭福采纳,获得10
2秒前
涨涨涨发布了新的文献求助10
2秒前
www完成签到 ,获得积分10
3秒前
zhang发布了新的文献求助10
3秒前
3秒前
3秒前
aabb完成签到,获得积分10
3秒前
能干数据线完成签到,获得积分20
4秒前
夏阳完成签到 ,获得积分10
5秒前
6秒前
凌雪柯完成签到 ,获得积分10
6秒前
7秒前
小宇宙发布了新的文献求助10
7秒前
酷波er应助谢大喵采纳,获得10
7秒前
柯柯柯完成签到,获得积分10
7秒前
NexusExplorer应助zzzjh采纳,获得10
8秒前
WQQ发布了新的文献求助10
9秒前
10秒前
醉熏的豁完成签到,获得积分20
10秒前
10秒前
科研通AI6应助wanghao1024采纳,获得10
11秒前
跳跃桐完成签到,获得积分20
11秒前
12秒前
Duoduo完成签到,获得积分10
13秒前
Lucas应助lyh采纳,获得10
13秒前
zhuxy2020完成签到,获得积分20
13秒前
14秒前
光年完成签到 ,获得积分10
14秒前
跳跃桐发布了新的文献求助30
15秒前
16秒前
渴望者发布了新的文献求助10
17秒前
18秒前
19秒前
asdaas完成签到,获得积分10
20秒前
Ava应助涨涨涨采纳,获得30
20秒前
sks发布了新的文献求助10
21秒前
莫妮卡完成签到,获得积分10
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742