亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:358: 399-407 被引量:1
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋作完成签到,获得积分10
1秒前
1秒前
米其林发布了新的文献求助30
3秒前
5秒前
KON完成签到,获得积分10
7秒前
10秒前
黎明完成签到,获得积分10
14秒前
零_完成签到,获得积分10
15秒前
负责代珊完成签到,获得积分10
16秒前
SciGPT应助123采纳,获得10
16秒前
16秒前
黎明发布了新的文献求助10
18秒前
研友_VZG7GZ应助怦然心动采纳,获得10
19秒前
领导范儿应助王老裂采纳,获得80
20秒前
22秒前
brwen完成签到,获得积分10
25秒前
dax大雄完成签到 ,获得积分10
29秒前
32秒前
34秒前
35秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得30
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
Hello应助科研通管家采纳,获得10
36秒前
ZZZ完成签到,获得积分10
39秒前
羊羊羊发布了新的文献求助10
39秒前
歪歪吸发布了新的文献求助10
39秒前
40秒前
xiaokun发布了新的文献求助10
40秒前
123发布了新的文献求助10
40秒前
王老裂发布了新的文献求助80
45秒前
歪歪吸完成签到,获得积分10
46秒前
北一君完成签到,获得积分10
46秒前
何靖馥琳完成签到,获得积分10
51秒前
丘比特应助库里强采纳,获得10
53秒前
LJL完成签到 ,获得积分10
57秒前
yong完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147