Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 399-407
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iTaciturne完成签到,获得积分10
1秒前
NexusExplorer应助典雅夏之采纳,获得10
1秒前
文静野狼完成签到 ,获得积分10
1秒前
钱多多发布了新的文献求助30
1秒前
eri发布了新的文献求助10
2秒前
小马甲应助淡然的从波采纳,获得10
2秒前
1410发布了新的文献求助10
3秒前
3秒前
脑洞疼应助叮当采纳,获得10
3秒前
RT发布了新的文献求助10
3秒前
饱满的煎饼完成签到,获得积分10
3秒前
4秒前
Muncy完成签到 ,获得积分10
4秒前
ABC发布了新的文献求助10
4秒前
5秒前
Flllllll完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
酸奶泡泡发布了新的文献求助10
7秒前
fxx发布了新的文献求助10
7秒前
7秒前
险胜应助liu采纳,获得10
8秒前
9秒前
bkagyin应助加菲丰丰采纳,获得10
9秒前
chenyq1177完成签到 ,获得积分10
10秒前
传奇3应助爱吃土豆采纳,获得30
10秒前
10秒前
小晓晓发布了新的文献求助10
10秒前
nns发布了新的文献求助10
11秒前
时光是个无赖应助微微采纳,获得10
11秒前
酷炫书芹发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
张志迪发布了新的文献求助10
12秒前
12秒前
鳗鱼鱼完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186