Intelligent classification of major depressive disorder using rs-fMRI of the posterior cingulate cortex

重性抑郁障碍 支持向量机 人工智能 接收机工作特性 功能磁共振成像 模式识别(心理学) 扣带回前部 预处理器 计算机科学 心理学 机器学习 精神科 神经科学 认知
作者
Shihao Huang,Hao Shisheng,Yue Si,Dan Shen,Lan Cui,Yuandong Zhang,Hang Lin,Sanwang Wang,Yujun Gao,Xin Guo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:358: 399-407
标识
DOI:10.1016/j.jad.2024.03.166
摘要

Major Depressive Disorder (MDD) is a widespread psychiatric condition that affects a significant portion of the global population. The classification and diagnosis of MDD is crucial for effective treatment. Traditional methods, based on clinical assessment, are subjective and rely on healthcare professionals' expertise. Recently, there's growing interest in using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to objectively understand MDD's neurobiology, complementing traditional diagnostics. The posterior cingulate cortex (PCC) is a pivotal brain region implicated in MDD which could be used to identify MDD from healthy controls. Thus, this study presents an intelligent approach based on rs-fMRI data to enhance the classification of MDD. Original rs-fMRI data were collected from a cohort of 430 participants, comprising 197 patients and 233 healthy controls. Subsequently, the data underwent preprocessing using DPARSF, and the amplitudes of low-frequency fluctuation values were computed to reduce data dimensionality and feature count. Then data associated with the PCC were extracted. After eliminating redundant features, various types of Support Vector Machines (SVMs) were employed as classifiers for intelligent categorization. Ultimately, we compared the performance of each algorithm, along with its respective optimal classifier, based on classification accuracy, true positive rate, and the area under the receiver operating characteristic curve (AUC-ROC). Upon analyzing the comparison results, we determined that the Random Forest (RF) algorithm, in conjunction with a sophisticated Gaussian SVM classifier, demonstrated the highest performance. Remarkably, this combination achieved a classification accuracy of 81.9 % and a true positive rate of 92.9 %. In conclusion, our study improves the classification of MDD by supplementing traditional methods with rs-fMRI and machine learning techniques, offering deeper neurobiological insights and aiding accuracy, while emphasizing its role as an adjunct to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang1090发布了新的文献求助30
刚刚
呜呜呜呜完成签到,获得积分10
刚刚
刚刚
Riki发布了新的文献求助10
1秒前
88发布了新的文献求助10
1秒前
2秒前
充电宝应助zfy采纳,获得10
3秒前
sak完成签到,获得积分10
4秒前
Shuo Yang发布了新的文献求助20
4秒前
呜呜呜呜发布了新的文献求助10
4秒前
在水一方应助hhzz采纳,获得10
4秒前
旧是完成签到 ,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
杨小胖完成签到 ,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
shouyu29应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
归海含烟完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
shire应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808