XAI-empowered IoT multi-sensor system for real-time milk adulteration detection

计算机科学 可解释性 物联网 数据挖掘 人工智能 机器学习 嵌入式系统
作者
Kashish Goyal,Parteek Kumar,Karun Verma
出处
期刊:Food Control [Elsevier]
卷期号:: 110495-110495
标识
DOI:10.1016/j.foodcont.2024.110495
摘要

In response to the critical issue of milk adulteration jeopardizing both the nutritional integrity of milk and the health of consumers, this paper presents an innovative Artificial Intelligence (AI) enabled Internet of Things (IoT) based multi-sensor system. The escalating consumption of milk as a pivotal nutritional source necessitates robust measures to ensure its safety and quality. Traditional methods of detecting adulteration have shown limitations, prompting the development of an automated and advanced approach. The proposed system integrates various sensors capable of real-time measurement, including pH, electrical conductivity (EC), temperature, gas parameters, and Volatile Organic Compounds (VOC) parameters. This comprehensive approach extends to measuring key constituents of milk samples like Fat, Protein, Solids Not Fat (SNF), Lactose, and Gravity values. To address specific adulterants—Urea, Starch, Sodium Bicarbonate, Maltodextrin, and Formaldehyde—a machine learning-based ensemble technique is employed for classification. This ensemble method outperforms conventional algorithms like RF, Light GBM, and Extra Trees Classifiers, achieving an impressive 96% accuracy rate in detecting adulterants within the milk dataset. The pivotal contribution of this study lies in the development of an IoT-based data acquisition device that seamlessly integrates with the sensor system, enabling efficient and precise measurements. Additionally, XAI is used to analyse the results obtained by the proposed model. For this, a framework called SHAP (SHapley Additive exPlanations) analysis is employed to elucidate the decision-making process of the ensemble model, enhancing the interpretability of results. By virtue of its real-time monitoring capabilities and accurate classification, the AI-enabled IoT-based multi-sensor system emerges as a promising solution for addressing milk adulteration. This innovation holds the potential to bolster milk quality control measures in the dairy industry. The system's ability to swiftly detect and categorize adulterants underscores its significance in combating the pervasive issue of compromised milk quality, thereby ensuring consumer safety and fostering industry integrity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
獭兔发布了新的文献求助10
刚刚
刚刚
111完成签到 ,获得积分10
刚刚
anlin发布了新的文献求助10
1秒前
jella发布了新的文献求助10
1秒前
英姑应助玩命做科研采纳,获得10
1秒前
你大夫哥完成签到,获得积分10
2秒前
4秒前
隐形曼青应助露露酱采纳,获得10
4秒前
5秒前
5秒前
研友_nPol2L发布了新的文献求助10
5秒前
你大夫哥发布了新的文献求助10
8秒前
华仔应助傲寒采纳,获得10
8秒前
ONESTUD应助机灵柚子采纳,获得30
9秒前
lb001完成签到 ,获得积分10
10秒前
科研通AI2S应助Jerry20184采纳,获得10
11秒前
冯先森ya发布了新的文献求助10
11秒前
哐哐哐完成签到,获得积分10
12秒前
13秒前
14秒前
leiyang49完成签到,获得积分10
14秒前
15秒前
Hello应助jella采纳,获得10
15秒前
今后应助你大夫哥采纳,获得10
16秒前
17秒前
18秒前
家嵩发布了新的文献求助20
18秒前
美好晓亦发布了新的文献求助10
18秒前
露露酱发布了新的文献求助10
19秒前
獭兔完成签到,获得积分10
19秒前
NE发布了新的文献求助10
20秒前
20秒前
Anthony发布了新的文献求助200
20秒前
王小明发布了新的文献求助10
22秒前
racill发布了新的文献求助30
22秒前
啸海关注了科研通微信公众号
24秒前
25秒前
Yara.H发布了新的文献求助10
25秒前
26秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Artificial Intelligence, Co-Creation and Creativity 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090540
求助须知:如何正确求助?哪些是违规求助? 2742640
关于积分的说明 7570941
捐赠科研通 2393267
什么是DOI,文献DOI怎么找? 1269305
科研通“疑难数据库(出版商)”最低求助积分说明 614275
版权声明 598756