Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:8
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细雨完成签到,获得积分20
1秒前
缚大哥完成签到,获得积分10
2秒前
果茶不热发布了新的文献求助10
2秒前
2秒前
王南晰完成签到 ,获得积分10
5秒前
桐桐应助大蛋采纳,获得10
5秒前
Richard完成签到 ,获得积分10
6秒前
cmmm完成签到 ,获得积分10
7秒前
SunOSun完成签到 ,获得积分10
7秒前
夏海梅发布了新的文献求助10
7秒前
7秒前
本征值完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助50
7秒前
8秒前
8秒前
嗷嗷完成签到,获得积分10
9秒前
9秒前
9秒前
清爽鸡翅发布了新的文献求助10
11秒前
11秒前
Mississippiecho完成签到,获得积分10
11秒前
12秒前
立麦给立麦的求助进行了留言
12秒前
大蛋完成签到,获得积分10
13秒前
13秒前
科研通AI5应助Harlotte采纳,获得10
14秒前
14秒前
14秒前
nini发布了新的文献求助10
14秒前
健忘的寒香完成签到,获得积分20
14秒前
李天正发布了新的文献求助200
15秒前
早睡早起身体好Q完成签到 ,获得积分10
15秒前
Dr_Stars完成签到,获得积分10
17秒前
难过飞瑶发布了新的文献求助10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
付强完成签到,获得积分10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143282
求助须知:如何正确求助?哪些是违规求助? 4341301
关于积分的说明 13520336
捐赠科研通 4181578
什么是DOI,文献DOI怎么找? 2293046
邀请新用户注册赠送积分活动 1293615
关于科研通互助平台的介绍 1236317