Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:14
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouzhou完成签到,获得积分10
1秒前
无语的成仁完成签到,获得积分10
1秒前
111完成签到,获得积分10
2秒前
芜湖完成签到,获得积分10
2秒前
2秒前
科研通AI6应助LongY采纳,获得10
2秒前
2秒前
冬虫夏草完成签到,获得积分10
2秒前
纯情蟑螂完成签到,获得积分10
3秒前
奋斗以松完成签到,获得积分10
3秒前
何故完成签到 ,获得积分10
3秒前
务实振家发布了新的文献求助10
3秒前
4秒前
4秒前
愤怒的夜绿完成签到,获得积分10
4秒前
4秒前
5秒前
grande完成签到,获得积分10
5秒前
黄晃晃完成签到,获得积分10
5秒前
djxdjt发布了新的文献求助10
5秒前
岳岳发布了新的文献求助10
5秒前
5秒前
6秒前
Str0n完成签到,获得积分10
7秒前
7秒前
万能图书馆应助ctttt采纳,获得10
7秒前
7秒前
大知闲闲完成签到,获得积分10
7秒前
鹂鹂复霖霖完成签到,获得积分10
8秒前
微糖完成签到,获得积分10
8秒前
Sun发布了新的文献求助10
8秒前
00发布了新的文献求助10
8秒前
Jasper应助舒心初晴采纳,获得10
9秒前
123木头人发布了新的文献求助10
10秒前
黑章鱼保罗完成签到,获得积分10
10秒前
阿白完成签到,获得积分10
10秒前
10秒前
小王时发布了新的文献求助10
10秒前
只是当时已惘然完成签到 ,获得积分10
10秒前
云朵完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014