Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:8
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼辞发布了新的文献求助30
1秒前
祥瑞发布了新的文献求助10
1秒前
2秒前
李爱国应助牛阳雨采纳,获得10
3秒前
共享精神应助仁爱曼梅采纳,获得10
4秒前
无限无声完成签到 ,获得积分10
4秒前
cccr完成签到,获得积分10
5秒前
共享精神应助舒适的素采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
星辰大海应助gzmejiji采纳,获得10
7秒前
曾泓跃发布了新的文献求助10
8秒前
8秒前
归尘应助二十一日采纳,获得30
9秒前
Litm完成签到 ,获得积分10
9秒前
10秒前
liu11发布了新的文献求助10
11秒前
李墩墩发布了新的文献求助10
12秒前
14秒前
RR完成签到 ,获得积分10
14秒前
14秒前
wanci应助99910119采纳,获得10
16秒前
liu11完成签到,获得积分10
17秒前
18秒前
热情冬灵发布了新的文献求助10
18秒前
Hannah发布了新的文献求助10
19秒前
希望天下0贩的0应助mym采纳,获得10
19秒前
舒适的素发布了新的文献求助10
19秒前
fzzf发布了新的文献求助10
20秒前
青筠发布了新的文献求助10
20秒前
天天快乐应助drift采纳,获得10
20秒前
大模型应助rachaoer采纳,获得10
21秒前
浮游应助唐阳采纳,获得10
22秒前
梓镱儿完成签到,获得积分10
23秒前
拼搏的璇发布了新的文献求助10
24秒前
25秒前
25秒前
年轻星星发布了新的文献求助10
25秒前
顾矜应助cccr采纳,获得10
26秒前
万能图书馆应助怠慢采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425064
求助须知:如何正确求助?哪些是违规求助? 4539194
关于积分的说明 14166180
捐赠科研通 4456338
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412494