亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6)
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
11秒前
天天快乐应助mochi采纳,获得10
1分钟前
1分钟前
mochi发布了新的文献求助10
1分钟前
拟好发布了新的文献求助10
3分钟前
arsenal完成签到 ,获得积分10
4分钟前
yang发布了新的文献求助10
5分钟前
领导范儿应助yang采纳,获得10
5分钟前
科研通AI2S应助拟好采纳,获得30
7分钟前
安青兰完成签到 ,获得积分10
8分钟前
8分钟前
赘婿应助mochi采纳,获得10
9分钟前
Qiuyajing完成签到,获得积分10
9分钟前
9分钟前
mochi发布了新的文献求助10
9分钟前
土豪的灵竹完成签到 ,获得积分10
10分钟前
稻子完成签到 ,获得积分10
12分钟前
13分钟前
Londidi完成签到,获得积分10
13分钟前
学术混子完成签到,获得积分10
14分钟前
souther完成签到,获得积分0
14分钟前
xuli21315完成签到 ,获得积分10
15分钟前
16分钟前
FUNG完成签到 ,获得积分10
16分钟前
17分钟前
yang发布了新的文献求助10
17分钟前
yang完成签到,获得积分20
18分钟前
Jonas完成签到,获得积分10
18分钟前
摆烂的熊猫完成签到,获得积分20
19分钟前
柔弱的恋风完成签到 ,获得积分10
20分钟前
20分钟前
ding应助淡然平蓝采纳,获得10
21分钟前
chiazy完成签到 ,获得积分10
21分钟前
21分钟前
21分钟前
爱静静完成签到,获得积分0
21分钟前
zyx完成签到,获得积分10
22分钟前
wy123完成签到 ,获得积分10
22分钟前
善学以致用应助markzhang采纳,获得10
23分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793574
关于积分的说明 7807032
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328