Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:14
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒜蒜发布了新的文献求助30
刚刚
sopha完成签到,获得积分10
刚刚
刚刚
rorocris发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
烟花应助伶俐的采枫采纳,获得10
2秒前
coco关注了科研通微信公众号
3秒前
所爱皆在发布了新的文献求助10
3秒前
4秒前
4秒前
NexusExplorer应助花生采纳,获得10
5秒前
内向灵凡发布了新的文献求助10
5秒前
科研通AI2S应助jennyyu采纳,获得10
5秒前
等等发布了新的文献求助10
6秒前
共享精神应助橘子采纳,获得10
6秒前
Fen3i发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小二郎应助lk采纳,获得10
7秒前
我是老大应助乌云采纳,获得10
7秒前
Achhz关注了科研通微信公众号
7秒前
8秒前
Akim应助李栗子采纳,获得10
8秒前
容二遥完成签到,获得积分10
9秒前
呆萌的白竹完成签到,获得积分10
9秒前
建建完成签到,获得积分10
9秒前
NI发布了新的文献求助10
9秒前
9秒前
10秒前
曹俊蔚发布了新的文献求助10
10秒前
思源应助霞霞采纳,获得10
10秒前
derlun发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Orange应助Poker采纳,获得30
12秒前
Akim应助Fen3i采纳,获得10
12秒前
隐形曼青应助迷路千秋采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049