Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:8
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助徐昊雯采纳,获得10
刚刚
上官若男应助健康的雪萍采纳,获得10
刚刚
刚刚
刚刚
长颈鹿没有脖子完成签到 ,获得积分10
1秒前
昵称呢完成签到,获得积分10
2秒前
科研通AI5应助syk采纳,获得10
2秒前
贝贝完成签到,获得积分10
3秒前
4秒前
wanghao婷完成签到,获得积分20
4秒前
无限松发布了新的文献求助10
4秒前
4秒前
ekswai发布了新的文献求助10
4秒前
Eleven888关注了科研通微信公众号
5秒前
5秒前
林机一动完成签到,获得积分10
5秒前
11完成签到,获得积分10
5秒前
6秒前
小v1212完成签到,获得积分20
6秒前
lemon发布了新的文献求助10
7秒前
zzzxx完成签到,获得积分10
8秒前
如来发布了新的文献求助20
8秒前
lgq12697应助萤火虫采纳,获得10
8秒前
8秒前
岩岩岩完成签到,获得积分10
8秒前
科研通AI6应助Matthew_G采纳,获得10
9秒前
Hhd完成签到,获得积分10
9秒前
银匠完成签到,获得积分10
9秒前
什么完成签到,获得积分10
9秒前
CodeCraft应助NEO采纳,获得10
10秒前
11发布了新的文献求助10
10秒前
beyondjun发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
11秒前
YA关注了科研通微信公众号
11秒前
panda_elvis发布了新的文献求助10
11秒前
11秒前
12秒前
香蕉觅云应助dg_fisher采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709