亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Text Mining and Bayesian Network to Identify Key Risk Factors for Safety Accidents in Metro Construction

贝叶斯网络 钥匙(锁) 计算机科学 运输工程 工程类 数据挖掘 数据科学 人工智能 计算机安全
作者
Jianhong Shen,Shupeng Liu,Jing Zhang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (6) 被引量:8
标识
DOI:10.1061/jcemd4.coeng-14114
摘要

Complex risk factors make metro construction safety accidents prone to occur, and there are various types of accidents. Accident reports record detailed information about different types of accidents in text form. However, effectively utilizing such unstructured data presents a significant challenge. Text mining (TM) provides a viable foundation for addressing this challenge, but related studies have limitations in risk feature extraction and lack of in-depth analysis capability. To address the deficiencies of existing studies and provide a feasible strategy for identifying key risk factors in the metro construction domain, this paper proposes an integrated model combining TM and machine learning–based Bayesian networks. Firstly, the term frequency-inverse document frequency (TF-IDF) algorithm in TM was used to separately extract the direct and indirect cause factors from the accident reports, with the missing factors supplemented using the TextRank algorithm. Then, depending on the assumption of whether to consider the conditional independence between factors, an improved naive Bayesian network (NBN) and a tree-augmented naive Bayesian network (TAN) were built based on the extracted factors and the corresponding accident types, respectively, for further in-depth analysis. Finally, the training set was divided to train the two network models, and sensitivity analysis was used to identify the key risk factors. Using 162 accident reports from China as an application example, the results showed that TAN exhibited a higher average accuracy (79.62%) in the test set compared with the improved NBN (71.75%), and the importance of risk factors for different accident types was successfully ranked from multiple perspectives using TAN. Meanwhile, some new insights into metro accidents in China were obtained, which can support decision-making for accident prevention and control. In conclusion, this paper effectively addresses the relevant limitations of accident text utilization and presents a novel approach for metro construction safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maprang完成签到 ,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
qiaorankongling完成签到 ,获得积分10
38秒前
HYQ完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Doctor.TANG完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
黄果兰完成签到,获得积分10
4分钟前
执着绿草完成签到 ,获得积分10
4分钟前
miki完成签到 ,获得积分10
5分钟前
lululemontree发布了新的文献求助10
5分钟前
5分钟前
5分钟前
lululemontree关注了科研通微信公众号
5分钟前
6分钟前
6分钟前
小妮子完成签到,获得积分10
6分钟前
大熊完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
深情的羞花完成签到 ,获得积分10
7分钟前
yyuchen完成签到,获得积分20
7分钟前
温婉的三娘完成签到,获得积分20
7分钟前
7分钟前
8分钟前
8分钟前
yyuchen发布了新的文献求助20
8分钟前
wanci应助科研通管家采纳,获得10
8分钟前
CodeCraft应助leilei采纳,获得10
8分钟前
月军完成签到,获得积分10
8分钟前
9527完成签到,获得积分10
9分钟前
9分钟前
leilei发布了新的文献求助10
9分钟前
77完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
大刘完成签到,获得积分10
10分钟前
大刘发布了新的文献求助30
10分钟前
忘忧Aquarius完成签到,获得积分10
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771538
捐赠科研通 4613710
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523