A probabilistic approach for extractive summarization based on clustering cum graph ranking method

自动汇总 计算机科学 聚类分析 概率逻辑 图形 排名(信息检索) 数据挖掘 聚类系数 情报检索 人工智能 理论计算机科学
作者
Amreen Ahmad,Tanvir Ahmad,Sarfaraz Masood,Mohd Khizir Siddiqui,Basma Abd El-Rahiem,Paweł Pławiak,Fahad Alblehai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2024.3392252
摘要

Online information has increased tremendously in today's age of the Internet.As a result, the need has arisen to extract relevant content from the plethora of available information.Researchers are widely using automatic text summarization techniques for extracting useful and relevant information from voluminous available information.The summary obtained from the automatic text summarization often faces the issues of diversity and information coverage.Earlier researchers have used graph-based approaches for ranking and optimization.This research work introduces a probabilistic approach named as ClusRank for summary extraction, comprising of a two-stage sentence selection model involving clustering and then ranking of sentences.The initial stage involves clustering of sentences using a proposed overlapping clustering algorithm on the weighted network, and later selection of salient sentences using the introduced probabilistic approach.In the analysis of real-world networks, community structure development is essential because it provides strategic insights that help decision-makers make well-informed choices.Furthermore, methodologically strict community detection algorithms are required due to the occurrence of discontinuous, overlapping, and nested community patterns in such networks.This research work, an algorithm is presented for detecting overlapping communities based on the concept of rough set and granular information on links.The sentence selection algorithm based on budget maximum coverage approach supports the assumption that larger sub-topics in a document are of more importance than smaller subtopics.The performance of the proposed probabilistic ClusRank is validated on DUC2001, DUC 2002, DUC2004, and DUC 2006 data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月发布了新的文献求助10
1秒前
2秒前
打打应助Ade采纳,获得10
3秒前
彳亍1117应助chunjianghua采纳,获得10
3秒前
彳亍1117应助chunjianghua采纳,获得10
3秒前
浮游应助chunjianghua采纳,获得10
3秒前
彳亍1117应助chunjianghua采纳,获得10
3秒前
4秒前
4秒前
爆米花应助赵小坤堃采纳,获得10
4秒前
天天快乐应助成就谷秋采纳,获得10
4秒前
薯角披萨发布了新的文献求助10
4秒前
共享精神应助西门灵薇采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
yangm9应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
yangm9应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
高高发布了新的文献求助10
7秒前
温水云发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
小二郎应助happy采纳,获得10
10秒前
靠谱发布了新的文献求助10
12秒前
wxyshare应助安静的颖采纳,获得10
13秒前
13秒前
健忘的静竹完成签到,获得积分10
13秒前
husuhew完成签到 ,获得积分10
14秒前
Aiden关注了科研通微信公众号
15秒前
15秒前
百川完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
负阳氧应助高高采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881