A probabilistic approach for extractive summarization based on clustering cum graph ranking method

自动汇总 计算机科学 聚类分析 概率逻辑 图形 排名(信息检索) 数据挖掘 聚类系数 情报检索 人工智能 理论计算机科学
作者
Amreen Ahmad,Tanvir Ahmad,Sarfaraz Masood,Mohd Khizir Siddiqui,Basma Abd El-Rahiem,Paweł Pławiak,Fahad Alblehai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2024.3392252
摘要

Online information has increased tremendously in today's age of the Internet.As a result, the need has arisen to extract relevant content from the plethora of available information.Researchers are widely using automatic text summarization techniques for extracting useful and relevant information from voluminous available information.The summary obtained from the automatic text summarization often faces the issues of diversity and information coverage.Earlier researchers have used graph-based approaches for ranking and optimization.This research work introduces a probabilistic approach named as ClusRank for summary extraction, comprising of a two-stage sentence selection model involving clustering and then ranking of sentences.The initial stage involves clustering of sentences using a proposed overlapping clustering algorithm on the weighted network, and later selection of salient sentences using the introduced probabilistic approach.In the analysis of real-world networks, community structure development is essential because it provides strategic insights that help decision-makers make well-informed choices.Furthermore, methodologically strict community detection algorithms are required due to the occurrence of discontinuous, overlapping, and nested community patterns in such networks.This research work, an algorithm is presented for detecting overlapping communities based on the concept of rough set and granular information on links.The sentence selection algorithm based on budget maximum coverage approach supports the assumption that larger sub-topics in a document are of more importance than smaller subtopics.The performance of the proposed probabilistic ClusRank is validated on DUC2001, DUC 2002, DUC2004, and DUC 2006 data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
qianqiansun发布了新的文献求助10
2秒前
坦率白山发布了新的文献求助10
2秒前
HH发布了新的文献求助10
3秒前
呆萌代桃发布了新的文献求助10
4秒前
4秒前
4秒前
闾丘志泽完成签到,获得积分10
5秒前
summer完成签到 ,获得积分10
6秒前
如意葶完成签到,获得积分20
7秒前
7秒前
巫马炎彬完成签到,获得积分0
7秒前
十五完成签到,获得积分20
7秒前
10秒前
流氓兔1514完成签到,获得积分10
10秒前
皆欢发布了新的文献求助10
10秒前
香蕉奇迹完成签到,获得积分10
11秒前
毛毛弟完成签到 ,获得积分10
11秒前
威武的薯片完成签到 ,获得积分10
12秒前
生动朝雪发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助liulongchao采纳,获得10
16秒前
香蕉奇迹发布了新的文献求助10
17秒前
17秒前
lxx完成签到 ,获得积分10
17秒前
思源应助呆萌代桃采纳,获得10
20秒前
20秒前
勤恳的磬发布了新的文献求助10
20秒前
AA发布了新的文献求助20
22秒前
开心心完成签到,获得积分10
22秒前
Petrichor发布了新的文献求助10
22秒前
22秒前
23秒前
26秒前
liulongchao发布了新的文献求助10
27秒前
江幻天发布了新的文献求助10
28秒前
30秒前
阳光笑颜发布了新的文献求助10
31秒前
山野桃饼完成签到,获得积分10
31秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388