Using GPT‐4 for LI‐RADS feature extraction and categorization with multilingual free‐text reports

计算机科学 人工智能 萃取(化学) 特征(语言学) 短信 分类 情报检索 色谱法 计算生物学 自然语言处理 化学 万维网 生物 语言学 哲学
作者
Kyowon Gu,Jeong Hyun Lee,Jaeseung Shin,Jeong Ah Hwang,Ji Hye Min,Woo Kyoung Jeong,Min Woo Lee,Kyoung Doo Song,Sung Hwan Bae
出处
期刊:Liver International [Wiley]
卷期号:44 (7): 1578-1587 被引量:34
标识
DOI:10.1111/liv.15891
摘要

Abstract Background and Aims The Liver Imaging Reporting and Data System (LI‐RADS) offers a standardized approach for imaging hepatocellular carcinoma. However, the diverse styles and structures of radiology reports complicate automatic data extraction. Large language models hold the potential for structured data extraction from free‐text reports. Our objective was to evaluate the performance of Generative Pre‐trained Transformer (GPT)‐4 in extracting LI‐RADS features and categories from free‐text liver magnetic resonance imaging (MRI) reports. Methods Three radiologists generated 160 fictitious free‐text liver MRI reports written in Korean and English, simulating real‐world practice. Of these, 20 were used for prompt engineering, and 140 formed the internal test cohort. Seventy‐two genuine reports, authored by 17 radiologists were collected and de‐identified for the external test cohort. LI‐RADS features were extracted using GPT‐4, with a Python script calculating categories. Accuracies in each test cohort were compared. Results On the external test, the accuracy for the extraction of major LI‐RADS features, which encompass size, nonrim arterial phase hyperenhancement, nonperipheral ‘washout’, enhancing ‘capsule’ and threshold growth, ranged from .92 to .99. For the rest of the LI‐RADS features, the accuracy ranged from .86 to .97. For the LI‐RADS category, the model showed an accuracy of .85 (95% CI: .76, .93). Conclusions GPT‐4 shows promise in extracting LI‐RADS features, yet further refinement of its prompting strategy and advancements in its neural network architecture are crucial for reliable use in processing complex real‐world MRI reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助从容谷丝采纳,获得10
刚刚
田田完成签到 ,获得积分10
1秒前
JamesPei应助英勇含烟采纳,获得10
1秒前
asang发布了新的文献求助10
1秒前
1秒前
2秒前
zhuangchen完成签到,获得积分20
2秒前
xiaowang完成签到,获得积分10
2秒前
2秒前
李爱国应助典雅沛珊采纳,获得10
2秒前
zyiyi发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
果汁完成签到,获得积分10
3秒前
健壮傲之发布了新的文献求助10
3秒前
乐观安蕾完成签到,获得积分10
3秒前
4秒前
4秒前
小蘑菇应助坦率的忆翠采纳,获得10
5秒前
Asuna完成签到,获得积分10
5秒前
xiaowang发布了新的文献求助10
6秒前
Patronus发布了新的文献求助10
6秒前
ATOM完成签到,获得积分10
6秒前
6秒前
权寻梅完成签到,获得积分10
6秒前
6秒前
笑点低炳完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
无私涔完成签到 ,获得积分10
7秒前
沫哈完成签到,获得积分10
8秒前
畅快夏柳发布了新的文献求助10
8秒前
betsy发布了新的文献求助10
8秒前
augenstern发布了新的文献求助10
8秒前
8秒前
zhuangchen发布了新的文献求助10
8秒前
绿叶小檗发布了新的文献求助20
9秒前
裴仰纳发布了新的文献求助10
9秒前
Izzy发布了新的文献求助10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271