Study of an Optimization Tool Avoided Bias for Brain-Computer Interfaces Using a Hybrid Deep Learning Model

人工智能 深度学习 计算机科学 机器学习
作者
Nabil I. Ajali-Hernández,Carlos M. Travieso,Nayara Bermudo-Mora,Patricia Reino-Cacho,Sheila Rodríguez-Saucedo
出处
期刊:Irbm [Elsevier BV]
卷期号:45 (3): 100836-100836
标识
DOI:10.1016/j.irbm.2024.100836
摘要

This study addresses the challenge of user-specific bias in Brain-Computer Interfaces (BCIs) by proposing a novel methodology. The primary objective is to employ a hybrid deep learning model, combining 2D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, to analyze EEG signals and classify imagined tasks. The overarching goal is to create a generalized model that is applicable to a broader population and mitigates user-specific biases. EEG signals from imagined motor tasks in the public dataset Physionet form the basis of the study. This is due to the need to use other databases in addition to the BCI competition. A model of arrays emulating the electrode arrangement in the head is proposed to capture spatial information using CNN, and LSTM algorithms are used to capture temporal information, followed by signal classification. The hybrid model is implemented to achieve a high classification rate, reaching up to 90% for specific users and averaging 74.54%. Error detection thresholds are set to eliminate subjects with low task affinity, resulting in a significant improvement in classification accuracy of up to 21.34%. The proposed methodology makes a significant contribution to the BCI field by providing a generalized system trained on diverse user data that effectively captures spatial and temporal EEG signal features. This study emphasizes the value of the hybrid model in advancing BCIs, highlighting its potential for improved reliability and accuracy in human-computer interaction. It also suggests the exploration of additional advanced layers, such as transformers, to further enhance the proposed methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Star-XYX发布了新的文献求助10
1秒前
LiShin发布了新的文献求助10
1秒前
2秒前
清爽乐菱完成签到,获得积分10
2秒前
魚子应助KneeYu采纳,获得100
2秒前
3秒前
无私的黄豆完成签到 ,获得积分10
3秒前
CipherSage应助内向雅香采纳,获得10
5秒前
苏州小北发布了新的文献求助10
8秒前
非要起名完成签到 ,获得积分10
10秒前
丘比特应助bulala采纳,获得10
10秒前
11秒前
11秒前
che完成签到,获得积分10
12秒前
54688完成签到,获得积分10
13秒前
14秒前
may发布了新的文献求助10
15秒前
小城故事和冰雨完成签到,获得积分10
15秒前
张雷应助科研进化中采纳,获得10
15秒前
16秒前
yejian完成签到,获得积分10
17秒前
wdccx完成签到,获得积分10
18秒前
希望天下0贩的0应助CHAIZH采纳,获得10
18秒前
llullalla发布了新的文献求助10
20秒前
小鱼儿发布了新的文献求助10
20秒前
20秒前
念姬发布了新的文献求助10
21秒前
斯文败类应助Star-XYX采纳,获得10
23秒前
鹤昀完成签到 ,获得积分10
24秒前
十六发布了新的文献求助10
25秒前
26秒前
上官若男应助胖Q采纳,获得10
27秒前
勤恳长颈鹿完成签到,获得积分10
28秒前
29秒前
29秒前
SYLH应助jzw采纳,获得10
30秒前
bingbing发布了新的文献求助10
30秒前
30秒前
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511990
关于积分的说明 11161200
捐赠科研通 3246780
什么是DOI,文献DOI怎么找? 1793495
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420