亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study of an Optimization Tool Avoided Bias for Brain-Computer Interfaces Using a Hybrid Deep Learning Model

人工智能 深度学习 计算机科学 机器学习
作者
Nabil I. Ajali-Hernández,Carlos M. Travieso,Nayara Bermudo-Mora,Patricia Reino-Cacho,Sheila Rodríguez-Saucedo
出处
期刊:Irbm [Elsevier]
卷期号:45 (3): 100836-100836
标识
DOI:10.1016/j.irbm.2024.100836
摘要

This study addresses the challenge of user-specific bias in Brain-Computer Interfaces (BCIs) by proposing a novel methodology. The primary objective is to employ a hybrid deep learning model, combining 2D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, to analyze EEG signals and classify imagined tasks. The overarching goal is to create a generalized model that is applicable to a broader population and mitigates user-specific biases. EEG signals from imagined motor tasks in the public dataset Physionet form the basis of the study. This is due to the need to use other databases in addition to the BCI competition. A model of arrays emulating the electrode arrangement in the head is proposed to capture spatial information using CNN, and LSTM algorithms are used to capture temporal information, followed by signal classification. The hybrid model is implemented to achieve a high classification rate, reaching up to 90% for specific users and averaging 74.54%. Error detection thresholds are set to eliminate subjects with low task affinity, resulting in a significant improvement in classification accuracy of up to 21.34%. The proposed methodology makes a significant contribution to the BCI field by providing a generalized system trained on diverse user data that effectively captures spatial and temporal EEG signal features. This study emphasizes the value of the hybrid model in advancing BCIs, highlighting its potential for improved reliability and accuracy in human-computer interaction. It also suggests the exploration of additional advanced layers, such as transformers, to further enhance the proposed methodology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷海豚完成签到,获得积分10
17秒前
23秒前
v哈哈发布了新的文献求助10
28秒前
lemon完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
赘婿应助lemon采纳,获得10
35秒前
Swear完成签到 ,获得积分10
39秒前
绾妤完成签到 ,获得积分0
46秒前
wangfaqing942完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
George发布了新的文献求助10
1分钟前
lemon发布了新的文献求助10
1分钟前
wanci应助George采纳,获得10
1分钟前
v哈哈完成签到 ,获得积分10
1分钟前
sun给sun的求助进行了留言
1分钟前
1分钟前
sun给sun的求助进行了留言
1分钟前
2分钟前
George发布了新的文献求助10
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
充电宝应助酷炫灰狼采纳,获得10
3分钟前
李爱国应助可靠的寒风采纳,获得10
3分钟前
TT完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
sun发布了新的文献求助10
3分钟前
林一发布了新的文献求助10
3分钟前
Hello应助雾里采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399