Study of an Optimization Tool Avoided Bias for Brain-Computer Interfaces Using a Hybrid Deep Learning Model

人工智能 深度学习 计算机科学 机器学习
作者
Nabil I. Ajali-Hernández,Carlos M. Travieso,Nayara Bermudo-Mora,Patricia Reino-Cacho,Sheila Rodríguez-Saucedo
出处
期刊:Irbm [Elsevier]
卷期号:45 (3): 100836-100836
标识
DOI:10.1016/j.irbm.2024.100836
摘要

This study addresses the challenge of user-specific bias in Brain-Computer Interfaces (BCIs) by proposing a novel methodology. The primary objective is to employ a hybrid deep learning model, combining 2D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, to analyze EEG signals and classify imagined tasks. The overarching goal is to create a generalized model that is applicable to a broader population and mitigates user-specific biases. EEG signals from imagined motor tasks in the public dataset Physionet form the basis of the study. This is due to the need to use other databases in addition to the BCI competition. A model of arrays emulating the electrode arrangement in the head is proposed to capture spatial information using CNN, and LSTM algorithms are used to capture temporal information, followed by signal classification. The hybrid model is implemented to achieve a high classification rate, reaching up to 90% for specific users and averaging 74.54%. Error detection thresholds are set to eliminate subjects with low task affinity, resulting in a significant improvement in classification accuracy of up to 21.34%. The proposed methodology makes a significant contribution to the BCI field by providing a generalized system trained on diverse user data that effectively captures spatial and temporal EEG signal features. This study emphasizes the value of the hybrid model in advancing BCIs, highlighting its potential for improved reliability and accuracy in human-computer interaction. It also suggests the exploration of additional advanced layers, such as transformers, to further enhance the proposed methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
兮兮大王发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
Alex发布了新的文献求助10
5秒前
852应助一往之前采纳,获得10
5秒前
ZK发布了新的文献求助30
7秒前
许子健发布了新的文献求助10
7秒前
AwaInsect发布了新的文献求助10
7秒前
7秒前
喻康发布了新的文献求助80
7秒前
zhangmy1发布了新的文献求助10
9秒前
Orange应助Alex采纳,获得10
10秒前
川ccc发布了新的文献求助10
10秒前
10秒前
11秒前
xht发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
李照慧发布了新的文献求助10
14秒前
15秒前
英俊的铭应助紫色茄子采纳,获得10
15秒前
嘿嘿发布了新的文献求助20
15秒前
16秒前
XIGUA发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
20秒前
许子健发布了新的文献求助10
21秒前
ganymede发布了新的文献求助10
21秒前
CipherSage应助迷人的含灵采纳,获得10
22秒前
英吉利25发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493