Study of an Optimization Tool Avoided Bias for Brain-Computer Interfaces Using a Hybrid Deep Learning Model

人工智能 深度学习 计算机科学 机器学习
作者
Nabil I. Ajali-Hernández,Carlos M. Travieso,Nayara Bermudo-Mora,Patricia Reino-Cacho,Sheila Rodríguez-Saucedo
出处
期刊:Irbm [Elsevier]
卷期号:45 (3): 100836-100836
标识
DOI:10.1016/j.irbm.2024.100836
摘要

This study addresses the challenge of user-specific bias in Brain-Computer Interfaces (BCIs) by proposing a novel methodology. The primary objective is to employ a hybrid deep learning model, combining 2D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, to analyze EEG signals and classify imagined tasks. The overarching goal is to create a generalized model that is applicable to a broader population and mitigates user-specific biases. EEG signals from imagined motor tasks in the public dataset Physionet form the basis of the study. This is due to the need to use other databases in addition to the BCI competition. A model of arrays emulating the electrode arrangement in the head is proposed to capture spatial information using CNN, and LSTM algorithms are used to capture temporal information, followed by signal classification. The hybrid model is implemented to achieve a high classification rate, reaching up to 90% for specific users and averaging 74.54%. Error detection thresholds are set to eliminate subjects with low task affinity, resulting in a significant improvement in classification accuracy of up to 21.34%. The proposed methodology makes a significant contribution to the BCI field by providing a generalized system trained on diverse user data that effectively captures spatial and temporal EEG signal features. This study emphasizes the value of the hybrid model in advancing BCIs, highlighting its potential for improved reliability and accuracy in human-computer interaction. It also suggests the exploration of additional advanced layers, such as transformers, to further enhance the proposed methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenzhou9完成签到,获得积分20
刚刚
12138发布了新的文献求助10
2秒前
ding应助沉静的曼荷采纳,获得10
3秒前
4秒前
4秒前
冷酷的柜门完成签到,获得积分10
5秒前
6秒前
研友_VZG7GZ应助5Hepburn采纳,获得10
8秒前
ZZRR完成签到,获得积分10
8秒前
Li发布了新的文献求助10
10秒前
lu完成签到,获得积分10
12秒前
12秒前
英俊的铭应助shore采纳,获得10
13秒前
13秒前
yuan1226完成签到,获得积分20
14秒前
沉默访冬完成签到,获得积分10
15秒前
小巧人生发布了新的文献求助10
16秒前
16秒前
17秒前
遇见天青色完成签到,获得积分10
18秒前
不配.应助SYanan采纳,获得10
18秒前
打打应助WEN采纳,获得10
19秒前
琪宝非宝发布了新的文献求助10
19秒前
天天快乐应助橘子sungua采纳,获得10
19秒前
布布发布了新的文献求助10
21秒前
23秒前
打打应助zqx采纳,获得10
23秒前
令狐擎宇完成签到,获得积分10
23秒前
大模型应助执着小蚂蚁采纳,获得10
23秒前
25秒前
25秒前
彭于晏应助多情以山采纳,获得10
26秒前
尤咏慈发布了新的文献求助10
27秒前
27秒前
28秒前
一一应助小巧人生采纳,获得10
29秒前
29秒前
zho发布了新的文献求助10
29秒前
30秒前
刘美美完成签到,获得积分10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228284
求助须知:如何正确求助?哪些是违规求助? 2876084
关于积分的说明 8193771
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333