Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢佬关注了科研通微信公众号
1秒前
1秒前
1秒前
FashionBoy应助Zeng采纳,获得10
1秒前
2秒前
2秒前
xiaoyu完成签到,获得积分10
2秒前
3秒前
完美世界应助洁白的宇天采纳,获得10
3秒前
医学生发布了新的文献求助10
4秒前
5秒前
5秒前
Jiangzhibing发布了新的文献求助10
6秒前
6秒前
jdh发布了新的文献求助30
7秒前
7秒前
7秒前
豪_seven发布了新的文献求助10
7秒前
7秒前
grmqgq完成签到,获得积分10
8秒前
8秒前
楠木发布了新的文献求助10
8秒前
小蘑菇应助keigo采纳,获得10
8秒前
妍yan发布了新的文献求助10
8秒前
9秒前
俭朴的奇异果完成签到,获得积分10
9秒前
9秒前
沉静篮球发布了新的文献求助10
10秒前
missme完成签到,获得积分10
10秒前
悦悦完成签到,获得积分20
10秒前
酷波er应助Cody采纳,获得10
10秒前
zyj发布了新的文献求助200
10秒前
金枪鱼子完成签到,获得积分10
11秒前
十三发布了新的文献求助30
11秒前
11秒前
YKH发布了新的文献求助10
11秒前
11秒前
研友_滕谷完成签到,获得积分10
11秒前
医学生完成签到,获得积分10
12秒前
由道罡发布了新的文献求助10
12秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239649
求助须知:如何正确求助?哪些是违规求助? 4406942
关于积分的说明 13716567
捐赠科研通 4275445
什么是DOI,文献DOI怎么找? 2346001
邀请新用户注册赠送积分活动 1343148
关于科研通互助平台的介绍 1301201