Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lq完成签到,获得积分10
刚刚
九秋霜完成签到,获得积分10
刚刚
称心如意完成签到 ,获得积分10
1秒前
1秒前
鳗鱼鸽子发布了新的文献求助10
1秒前
蓝蓝的天空完成签到 ,获得积分10
2秒前
正直的以冬完成签到,获得积分10
2秒前
小蛇玩完成签到,获得积分10
3秒前
yhmi0809完成签到,获得积分10
3秒前
宫宛儿完成签到,获得积分10
3秒前
JamesPei应助韩老魔采纳,获得10
4秒前
潘雨露完成签到 ,获得积分10
5秒前
5秒前
大气的莆完成签到 ,获得积分10
6秒前
王慧宇发布了新的文献求助30
6秒前
现代的擎苍完成签到,获得积分10
7秒前
花Cheung完成签到,获得积分10
7秒前
7秒前
7秒前
bobo完成签到 ,获得积分10
8秒前
三棱镜完成签到,获得积分10
10秒前
emmmmmq发布了新的文献求助10
10秒前
问题多多完成签到 ,获得积分10
13秒前
ephore应助liudw采纳,获得50
13秒前
kevin1018完成签到,获得积分10
13秒前
王一发布了新的文献求助10
13秒前
三棱镜发布了新的文献求助30
13秒前
未明的感觉完成签到,获得积分10
14秒前
危机的雍发布了新的文献求助10
14秒前
李爱国应助猪猪hero采纳,获得10
15秒前
adovj完成签到 ,获得积分10
15秒前
搜集达人应助zbzfp2025采纳,获得10
15秒前
汕头凯奇完成签到,获得积分10
16秒前
玉宇琼楼完成签到 ,获得积分20
16秒前
长情访梦完成签到,获得积分10
16秒前
善学以致用应助机密塔采纳,获得10
17秒前
17秒前
18秒前
无花果应助结构女王采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911267
求助须知:如何正确求助?哪些是违规求助? 4186820
关于积分的说明 13001311
捐赠科研通 3954578
什么是DOI,文献DOI怎么找? 2168351
邀请新用户注册赠送积分活动 1186772
关于科研通互助平台的介绍 1094177