亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
kity完成签到,获得积分10
7秒前
万能图书馆应助虚心的芹采纳,获得30
8秒前
陆嘉盈完成签到 ,获得积分10
23秒前
PYF完成签到,获得积分10
23秒前
河狸发布了新的文献求助20
29秒前
32秒前
九星完成签到 ,获得积分10
45秒前
哲别发布了新的文献求助10
56秒前
河狸完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LALA发布了新的文献求助10
1分钟前
EDTA完成签到,获得积分10
1分钟前
一辰不染完成签到,获得积分10
1分钟前
chen完成签到,获得积分10
1分钟前
susu发布了新的文献求助10
1分钟前
chen发布了新的文献求助10
1分钟前
htc1996发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zqq完成签到,获得积分0
1分钟前
Demon724完成签到,获得积分10
2分钟前
htc1996完成签到,获得积分10
2分钟前
lin完成签到 ,获得积分10
2分钟前
牛油果完成签到,获得积分10
2分钟前
2分钟前
2分钟前
TJ发布了新的文献求助10
2分钟前
kekeke777完成签到 ,获得积分10
2分钟前
TEMPO发布了新的文献求助10
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
2分钟前
Ru完成签到 ,获得积分10
2分钟前
TEMPO完成签到,获得积分10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
归去来兮应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
维奈克拉应助科研通管家采纳,获得20
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394