已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky发布了新的文献求助10
1秒前
科研通AI6应助狂野傲南采纳,获得10
2秒前
好看的花花鱼完成签到 ,获得积分10
10秒前
10秒前
11秒前
刘刘刘发布了新的文献求助10
14秒前
小凯完成签到 ,获得积分0
14秒前
18秒前
beiwei完成签到 ,获得积分10
19秒前
科目三应助浪里白条采纳,获得10
20秒前
狂野傲南完成签到,获得积分10
20秒前
开朗的千雁完成签到 ,获得积分10
22秒前
25秒前
高大梦琪完成签到 ,获得积分10
26秒前
执着绿草完成签到 ,获得积分10
27秒前
浪里白条发布了新的文献求助10
31秒前
34秒前
37秒前
40秒前
43秒前
45秒前
bluesky发布了新的文献求助10
46秒前
汉堡包应助麻辣烫小姐采纳,获得10
47秒前
48秒前
小小的飞机完成签到,获得积分20
53秒前
合欢完成签到,获得积分10
53秒前
咻咻咻超级飞侠完成签到 ,获得积分10
57秒前
绿茶不茶完成签到 ,获得积分10
59秒前
贤惠的阑悦完成签到,获得积分20
59秒前
msk完成签到 ,获得积分10
59秒前
学术蝗虫年猪完成签到,获得积分10
1分钟前
刘刘刘完成签到,获得积分10
1分钟前
1分钟前
彭于晏应助优美可燕采纳,获得10
1分钟前
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
bluesky关注了科研通微信公众号
1分钟前
科研通AI6应助inRe采纳,获得10
1分钟前
juzg完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622120
求助须知:如何正确求助?哪些是违规求助? 4707021
关于积分的说明 14938320
捐赠科研通 4768042
什么是DOI,文献DOI怎么找? 2552119
邀请新用户注册赠送积分活动 1514298
关于科研通互助平台的介绍 1474998