Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HX完成签到,获得积分10
1秒前
哈哈发布了新的文献求助10
2秒前
2秒前
瑾jiang完成签到,获得积分10
3秒前
MrCat发布了新的文献求助10
4秒前
4秒前
港岛妹妹应助橙c美式采纳,获得10
4秒前
简单灵凡完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
读研好难发布了新的文献求助10
6秒前
6秒前
三眼乌鸦完成签到,获得积分10
8秒前
Jing发布了新的文献求助10
8秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
9秒前
ruuuu发布了新的文献求助10
9秒前
wml关闭了wml文献求助
9秒前
田様应助lll采纳,获得10
10秒前
10秒前
万能图书馆应助吴志新采纳,获得10
11秒前
11秒前
August完成签到,获得积分10
11秒前
三眼乌鸦发布了新的文献求助10
12秒前
Moriarty完成签到,获得积分10
12秒前
梦幻发布了新的文献求助10
12秒前
orixero应助笨笨西装采纳,获得10
13秒前
读研好难完成签到,获得积分10
14秒前
于早上完成签到,获得积分10
14秒前
顺顺利利完成签到,获得积分10
14秒前
852应助王一帆采纳,获得10
14秒前
一路硕博应助完美的海秋采纳,获得10
15秒前
嘿嘿发布了新的文献求助10
15秒前
16秒前
一一应助13654135090采纳,获得30
16秒前
华仔应助独特笙采纳,获得10
17秒前
大力的小熊猫完成签到 ,获得积分10
17秒前
17秒前
18秒前
yihe发布了新的文献求助10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245962
求助须知:如何正确求助?哪些是违规求助? 2889582
关于积分的说明 8259253
捐赠科研通 2558026
什么是DOI,文献DOI怎么找? 1386905
科研通“疑难数据库(出版商)”最低求助积分说明 650340
邀请新用户注册赠送积分活动 626748