Fast Constraints Tuning via Transfer Learning and Multi-Objective Optimization

学习迁移 计算机科学 人工智能 数学优化 数学
作者
Meng Zhang,Zheng Zhang,Yifan Niu,Jiayi Li,Zewei Chen,Guoqing Li,Yajun Ha,Tinghuan Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 2705-2718
标识
DOI:10.1109/tcad.2024.3377162
摘要

As the complexity of very-large-scale integration (VLSI) increases, empirically determining the design constraints necessary to achieve the optimal performance, power, and area (PPA) within the electronic design automation (EDA) workflow becomes more challenging. Design space exploration is capable of effectively and automatically identifying the design constraints required to attain the optimal PPA in VLSI designs. However, the absence of prior knowledge can lead to less efficient explorations. This paper proposes a novel fast constraint tuning framework via transfer learning and multi-objective Bayesian optimization (MOBO) to find the optimal design constraints. Firstly, we introduce transfer learning into multi-objective Bayesian optimization by Gaussian Copula and transform the PPA data into residual observations. We propose to transfer the prior information of the implemented technologies to the advanced technology to optimize the parameter design space under the advanced technology. Secondly, we propose Gaussian process regression with an auto-encoder-based deep kernel as a surrogate model in MOBO. The auto-encoder-based deep kernel can extract more input features to make the surrogate model more precise. We employ the batch uncertainty-aware search acquisition function to improve exploration efficiency. Using this surrogate model and this acquisition function in MOBO can reduce the amount that EDA tools need to run. The average EDA tools running times of the proposed model is 204, and the average ADRS is 0.0373. Compared to state-of-the-art approaches, experiments on a CPU design reveal that a higher-quality Pareto frontier can be provided with a shorter running time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助feifan159采纳,获得10
4秒前
alter_mu发布了新的文献求助10
7秒前
我本人lrx完成签到 ,获得积分10
11秒前
大模型应助alter_mu采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
grace完成签到 ,获得积分10
18秒前
子车茗应助轻松的蜜粉采纳,获得50
21秒前
22秒前
22秒前
alter_mu完成签到,获得积分10
26秒前
feifan159发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
轻松的蜜粉完成签到,获得积分10
30秒前
热情爆米花完成签到 ,获得积分10
31秒前
34秒前
整齐百褶裙完成签到 ,获得积分10
35秒前
宁123完成签到 ,获得积分10
37秒前
爱听歌的青筠完成签到,获得积分10
38秒前
乐正怡完成签到 ,获得积分10
49秒前
Spice完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
55秒前
又壮了完成签到 ,获得积分10
56秒前
lllIllllIll完成签到,获得积分10
1分钟前
优秀的白卉完成签到 ,获得积分10
1分钟前
土豪的灵竹完成签到 ,获得积分10
1分钟前
1分钟前
Alanni完成签到 ,获得积分10
1分钟前
科研通AI6应助麦子采纳,获得10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
蛇蛇王子完成签到 ,获得积分10
1分钟前
兰花二狗他爹完成签到,获得积分10
1分钟前
椰子完成签到 ,获得积分10
1分钟前
乐天生完成签到,获得积分10
1分钟前
温婉的凝芙完成签到 ,获得积分10
1分钟前
斯文败类应助qyang采纳,获得10
1分钟前
lx完成签到,获得积分10
1分钟前
小果完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555124
求助须知:如何正确求助?哪些是违规求助? 4639662
关于积分的说明 14656533
捐赠科研通 4581657
什么是DOI,文献DOI怎么找? 2512907
邀请新用户注册赠送积分活动 1487593
关于科研通互助平台的介绍 1458623