亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助1206425219密采纳,获得10
45秒前
58秒前
阿俊完成签到 ,获得积分10
1分钟前
wwww发布了新的文献求助10
1分钟前
1分钟前
2分钟前
WebCasa完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
万能图书馆应助wwww采纳,获得30
2分钟前
2分钟前
3分钟前
wwww发布了新的文献求助30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
3分钟前
orixero应助wwww采纳,获得10
4分钟前
4分钟前
正直慕灵完成签到 ,获得积分20
4分钟前
5分钟前
科研通AI2S应助李根采纳,获得10
5分钟前
ChenWei发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
wwww发布了新的文献求助10
6分钟前
小二郎应助wwww采纳,获得10
6分钟前
123321完成签到 ,获得积分10
6分钟前
所所应助从容栾采纳,获得10
6分钟前
小惠完成签到,获得积分10
6分钟前
Hvginn完成签到,获得积分10
6分钟前
彭晓雅完成签到 ,获得积分10
7分钟前
7分钟前
欢喜的毛豆完成签到,获得积分10
7分钟前
棍棍来也完成签到,获得积分10
7分钟前
8分钟前
从容栾发布了新的文献求助10
8分钟前
从容栾完成签到,获得积分20
8分钟前
8分钟前
Funnymudpee发布了新的文献求助10
8分钟前
lanxinge完成签到 ,获得积分10
8分钟前
xuan完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324334
求助须知:如何正确求助?哪些是违规求助? 4465288
关于积分的说明 13894309
捐赠科研通 4357166
什么是DOI,文献DOI怎么找? 2393240
邀请新用户注册赠送积分活动 1386757
关于科研通互助平台的介绍 1357164