亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
luyang发布了新的文献求助10
10秒前
10秒前
Wenhao Zhao发布了新的文献求助10
11秒前
FashionBoy应助ccczzz采纳,获得30
11秒前
小蘑菇应助xlj采纳,获得10
12秒前
Wenhao Zhao完成签到,获得积分10
24秒前
27秒前
xlj发布了新的文献求助10
32秒前
37秒前
ccczzz发布了新的文献求助30
42秒前
ccczzz发布了新的文献求助10
53秒前
科研通AI2S应助ccczzz采纳,获得30
1分钟前
CJY完成签到 ,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
斯文败类应助连安阳采纳,获得10
1分钟前
刚刚好-LG发布了新的文献求助30
1分钟前
1分钟前
连安阳发布了新的文献求助10
1分钟前
刚刚好-LG完成签到,获得积分10
1分钟前
连安阳完成签到,获得积分10
1分钟前
bkagyin应助大意的如柏采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
大意的如柏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
里昂发布了新的文献求助30
3分钟前
sissiarno完成签到,获得积分0
3分钟前
3分钟前
SciGPT应助liuliu采纳,获得10
4分钟前
lingling完成签到 ,获得积分10
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292483
求助须知:如何正确求助?哪些是违规求助? 4443028
关于积分的说明 13830802
捐赠科研通 4326464
什么是DOI,文献DOI怎么找? 2374874
邀请新用户注册赠送积分活动 1370217
关于科研通互助平台的介绍 1334715