Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周星星完成签到,获得积分10
1秒前
乐此不疲的猪完成签到,获得积分10
1秒前
张雨兴完成签到,获得积分10
1秒前
诚心的冰棍完成签到,获得积分10
2秒前
健壮绍辉完成签到,获得积分10
2秒前
ding应助zhaoning123采纳,获得10
3秒前
栾花花完成签到 ,获得积分10
3秒前
Diana完成签到,获得积分10
5秒前
aaaaa22222完成签到,获得积分10
5秒前
青竹完成签到,获得积分10
6秒前
张夏萌完成签到,获得积分10
6秒前
ygmygqdss完成签到 ,获得积分10
6秒前
山水完成签到,获得积分10
6秒前
DingShicong完成签到 ,获得积分10
8秒前
CT发布了新的文献求助10
8秒前
feng完成签到,获得积分10
8秒前
Hilda007应助dtcao采纳,获得10
9秒前
迅速的代桃完成签到,获得积分10
9秒前
10秒前
舒适的藏花完成签到 ,获得积分10
10秒前
asdfghjkl完成签到 ,获得积分10
10秒前
一二三完成签到,获得积分10
10秒前
星辰大海应助Diana采纳,获得10
10秒前
xdc完成签到,获得积分20
11秒前
11秒前
11秒前
做实验一点都不酷完成签到,获得积分10
12秒前
Aurora完成签到 ,获得积分10
12秒前
懦弱的如蓉完成签到 ,获得积分10
12秒前
Simmy完成签到,获得积分10
12秒前
研友_Zb1rln完成签到,获得积分10
13秒前
施世宏完成签到,获得积分10
14秒前
彬彬嘉完成签到,获得积分10
14秒前
云ch完成签到,获得积分10
14秒前
zxvcbnm完成签到,获得积分10
14秒前
深情冷雪完成签到,获得积分20
15秒前
wgqiang完成签到,获得积分10
15秒前
鑫鑫和东东呀完成签到,获得积分10
16秒前
雨水完成签到,获得积分10
16秒前
当当发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347908
求助须知:如何正确求助?哪些是违规求助? 4482121
关于积分的说明 13948889
捐赠科研通 4380545
什么是DOI,文献DOI怎么找? 2407020
邀请新用户注册赠送积分活动 1399566
关于科研通互助平台的介绍 1372819