已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治 政治学 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
awa完成签到,获得积分20
1秒前
Xieyusen发布了新的文献求助10
2秒前
momi完成签到 ,获得积分10
2秒前
Cheng发布了新的文献求助10
6秒前
泥嚎应助小卡采纳,获得10
6秒前
舒芙蕾完成签到,获得积分10
7秒前
FashionBoy应助朴实的小萱采纳,获得10
10秒前
小蘑菇应助Cheng采纳,获得10
12秒前
无幻完成签到 ,获得积分10
13秒前
儒雅香彤完成签到 ,获得积分10
13秒前
自觉凌蝶完成签到 ,获得积分10
14秒前
14秒前
不知道起啥名字完成签到 ,获得积分10
14秒前
清脆泥猴桃完成签到,获得积分10
16秒前
背后的傥完成签到,获得积分10
16秒前
17秒前
何东浩发布了新的文献求助10
17秒前
胡添傲发布了新的文献求助10
21秒前
Hshi完成签到 ,获得积分10
22秒前
衣吾余完成签到,获得积分10
25秒前
Wilddeer完成签到 ,获得积分10
25秒前
25秒前
科研通AI2S应助fb12000采纳,获得10
27秒前
27秒前
蜜呐发布了新的文献求助10
28秒前
烟花应助搞怪的山水采纳,获得10
28秒前
coolkid完成签到,获得积分0
29秒前
菠萝冰棒完成签到 ,获得积分10
29秒前
lx发布了新的文献求助10
30秒前
耶格尔完成签到 ,获得积分10
31秒前
Spark发布了新的文献求助10
32秒前
小耿完成签到 ,获得积分10
33秒前
超人完成签到 ,获得积分10
34秒前
34秒前
fb12000完成签到,获得积分10
36秒前
小虎应助蜜呐采纳,获得10
37秒前
Jello完成签到,获得积分10
39秒前
hihi完成签到,获得积分10
40秒前
清爽的傲易完成签到 ,获得积分10
45秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168