清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
gszy1975完成签到,获得积分10
1分钟前
Panini完成签到 ,获得积分10
1分钟前
1分钟前
HHH完成签到 ,获得积分10
2分钟前
明理从露完成签到 ,获得积分10
2分钟前
沿途有你完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
zjspidany应助幻梦如歌采纳,获得10
3分钟前
zcydbttj2011完成签到 ,获得积分10
4分钟前
故渊完成签到,获得积分10
4分钟前
北国雪未消完成签到 ,获得积分10
4分钟前
ccc完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
宇心应助科研通管家采纳,获得10
5分钟前
江三村完成签到 ,获得积分10
5分钟前
Wang完成签到 ,获得积分20
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
所所应助科研通管家采纳,获得10
7分钟前
8分钟前
Zzz_Carlos完成签到 ,获得积分10
9分钟前
小脚丫完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
竹筏过海应助细心的语蓉采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
11分钟前
羫孔发布了新的文献求助10
11分钟前
ddddddd完成签到 ,获得积分10
12分钟前
12分钟前
羫孔发布了新的文献求助10
12分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
震动的听枫完成签到,获得积分10
13分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314426
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622422
什么是DOI,文献DOI怎么找? 1434534
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881