亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新斯的明的明完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
29秒前
蜡笔小新完成签到,获得积分10
38秒前
笨笨山芙完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
2分钟前
Sym发布了新的文献求助10
2分钟前
立行完成签到 ,获得积分10
2分钟前
安静书雁完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
古铜完成签到 ,获得积分10
4分钟前
契咯完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
苏楠完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
老迟到的友桃完成签到 ,获得积分10
7分钟前
ceeray23发布了新的文献求助20
7分钟前
tingalan应助科研通管家采纳,获得10
7分钟前
bookgg完成签到 ,获得积分10
7分钟前
7分钟前
ZgnomeshghT发布了新的文献求助10
7分钟前
善学以致用应助ZgnomeshghT采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889492
求助须知:如何正确求助?哪些是违规求助? 4173503
关于积分的说明 12952128
捐赠科研通 3934941
什么是DOI,文献DOI怎么找? 2159113
邀请新用户注册赠送积分活动 1177464
关于科研通互助平台的介绍 1082384