Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的梦山完成签到,获得积分10
刚刚
刚刚
优秀若剑发布了新的文献求助30
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
风趣绮烟发布了新的文献求助10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
丘比特应助相约在天边采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得50
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
自信晓旋完成签到,获得积分10
4秒前
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
wlscj应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
非而者厚应助科研通管家采纳,获得10
4秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930