Global Overcomplete Dictionary-Based Sparse and Nonnegative Collaborative Representation for Hyperspectral Target Detection

高光谱成像 计算机科学 稀疏逼近 模式识别(心理学) 人工智能 代表(政治) 遥感 地质学 政治学 政治 法学
作者
Chenxing Li,Dehui Zhu,Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3381719
摘要

The combined sparse and collaborative representation-based algorithm is one of the most effective methods among hyperspectral target detection methods based on representation and dictionary learning. It encourages target atoms to compete with each other and background atoms to collaborate in the representation. However, this method suffers from several drawbacks. In sparse representation, an overcomplete dictionary is necessary, whereas, in collaborative representation, non-negative coefficients are required. Besides, the local dual window approach may result in impure background dictionaries obtained from the outer window. To address these issues, we propose a novel approach for hyperspectral target detection, referred to as the global overcomplete dictionary-based sparse and nonnegative collaborative representation (GODSNCR) detector. First, a hierarchical density clustering algorithm is used to complete the dictionary atom extraction to construct a joint overcomplete dictionary to satisfy the dictionary overcompleteness problem required for sparse representation. Second, a nonnegative constraint on the coefficient matrix and a "sum to one" constraint for the joint representation are incorporated to make it more consistent with the physical meaning. Finally, the limitation of the local dual window approach is overcome by substituting the local background dictionary with a global background dictionary. Through the aforementioned strategies, we can use a joint overcomplete dictionary for achieving the sparse representation of targets and utilize a global background dictionary for the collaborative representation of background, the final detection results are obtained by calculating the residuals. The experimental results clearly demonstrate that the proposed algorithm has significant improvement in detection accuracy and strong robustness compared to other typical representation-based hyperspectral target detection methods. Our model will be available at https://github.com/Chenxing-Li/GODSNCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助xinyuxxx采纳,获得10
刚刚
CC发布了新的文献求助10
刚刚
echo发布了新的文献求助10
1秒前
2秒前
李李李完成签到,获得积分10
2秒前
2秒前
十五离别后完成签到,获得积分10
2秒前
3秒前
上善若脱碳甲醛完成签到 ,获得积分10
3秒前
yibo发布了新的文献求助10
3秒前
可爱的函函应助清荔采纳,获得10
3秒前
4秒前
英姑应助瀚子采纳,获得10
4秒前
秋天的雪完成签到,获得积分10
4秒前
西瓜完成签到,获得积分10
4秒前
4秒前
桐桐应助爱听歌老1采纳,获得10
4秒前
5秒前
3am发布了新的文献求助10
5秒前
5秒前
铌123发布了新的文献求助20
5秒前
袁月辉发布了新的文献求助10
6秒前
6秒前
端庄的寄风完成签到,获得积分10
6秒前
小飞爱科研完成签到,获得积分10
6秒前
LT完成签到 ,获得积分0
6秒前
秦罗敷完成签到,获得积分20
7秒前
小易发布了新的文献求助20
8秒前
泊凉少年发布了新的文献求助10
9秒前
Rylee发布了新的文献求助10
9秒前
吴彦祖发布了新的文献求助10
9秒前
李爱国应助ddizi采纳,获得10
11秒前
12秒前
feng完成签到,获得积分10
12秒前
spz150完成签到,获得积分10
13秒前
Rangi完成签到,获得积分10
13秒前
无奈寒梦关注了科研通微信公众号
14秒前
Sunyidan完成签到,获得积分10
14秒前
壮观以松完成签到,获得积分10
15秒前
JamesPei应助Rylee采纳,获得10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541