亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSFA: Multi‐stage feature aggregation network for multi‐label image recognition

模式识别(心理学) 计算机科学 特征(语言学) 人工智能 特征提取 范畴变量 一致性(知识库) 比例(比率) 数据挖掘 机器学习 地理 哲学 语言学 地图学
作者
Jiale Chen,Feng Xu,Tao Zeng,Xin Li,Shangjing Chen,Jie Yu
出处
期刊:Iet Image Processing [Institution of Electrical Engineers]
卷期号:18 (7): 1862-1877
标识
DOI:10.1049/ipr2.13068
摘要

Abstract Multi‐label image recognition (MLR) is a significant branch of image classification that aims to assign multiple categorical labels to each input. Previous research has focused on enhancing the learning of category‐related regional features. However, the potential impact of multi‐scale distributions in intra‐ and inter‐category targets on MLR tends to be neglected. Besides, semantic consistency for categories is restricted to be considered on single‐scale features, resulting in suboptimal feature extraction. To address the limitations of above, a Multi‐stage Feature Aggregation (MSFA) network is proposed. In MSFA, a novel local feature extraction method is suggested to progressively extract category‐related high‐resolution local features in both spatial and channel dimensions. Subsequently, local and global features are fused without additional up‐ and down‐sampling to enrich the scale diversity of the features while incorporating refined class‐specific information. Furthermore, a hierarchical prediction scheme for MLR is proposed, which generates classification confidence corresponding to different scales under hierarchical loss supervision. Consequently, the final output of the network comes from the joint prediction by the classifiers on multi‐scale features, ensuring a stronger feature extraction capability. The extensive experiments have been carried on VOC and MS‐COCO datasets, and the superiority of MSFA over existing mainstream methods has been verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助Bo采纳,获得10
14秒前
21秒前
23秒前
Bo发布了新的文献求助10
28秒前
ssr发布了新的文献求助10
30秒前
32秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
Ming应助科研通管家采纳,获得10
33秒前
Bo完成签到,获得积分10
38秒前
Lee完成签到,获得积分10
51秒前
1分钟前
陈冰发布了新的文献求助10
1分钟前
feizao完成签到,获得积分10
1分钟前
丘比特应助陈冰采纳,获得10
1分钟前
nito发布了新的文献求助10
1分钟前
nito完成签到,获得积分10
1分钟前
慕青应助nito采纳,获得10
1分钟前
1分钟前
调皮老头发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
nito发布了新的文献求助10
2分钟前
3分钟前
xx发布了新的文献求助10
3分钟前
3分钟前
可爱的函函应助Yikepp采纳,获得10
3分钟前
Lucas应助xx采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yuki完成签到 ,获得积分10
3分钟前
nito发布了新的文献求助10
3分钟前
科研通AI6.1应助yukky采纳,获得30
3分钟前
科研通AI6.1应助Emma采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772690
求助须知:如何正确求助?哪些是违规求助? 5601217
关于积分的说明 15429935
捐赠科研通 4905602
什么是DOI,文献DOI怎么找? 2639524
邀请新用户注册赠送积分活动 1587405
关于科研通互助平台的介绍 1542337