MSFA: Multi‐stage feature aggregation network for multi‐label image recognition

模式识别(心理学) 计算机科学 特征(语言学) 人工智能 特征提取 范畴变量 一致性(知识库) 比例(比率) 数据挖掘 机器学习 地理 语言学 地图学 哲学
作者
Jiale Chen,Feng Xu,Tao Zeng,Xin Li,Shangjing Chen,Jie Yu
出处
期刊:Iet Image Processing [Institution of Electrical Engineers]
卷期号:18 (7): 1862-1877
标识
DOI:10.1049/ipr2.13068
摘要

Abstract Multi‐label image recognition (MLR) is a significant branch of image classification that aims to assign multiple categorical labels to each input. Previous research has focused on enhancing the learning of category‐related regional features. However, the potential impact of multi‐scale distributions in intra‐ and inter‐category targets on MLR tends to be neglected. Besides, semantic consistency for categories is restricted to be considered on single‐scale features, resulting in suboptimal feature extraction. To address the limitations of above, a Multi‐stage Feature Aggregation (MSFA) network is proposed. In MSFA, a novel local feature extraction method is suggested to progressively extract category‐related high‐resolution local features in both spatial and channel dimensions. Subsequently, local and global features are fused without additional up‐ and down‐sampling to enrich the scale diversity of the features while incorporating refined class‐specific information. Furthermore, a hierarchical prediction scheme for MLR is proposed, which generates classification confidence corresponding to different scales under hierarchical loss supervision. Consequently, the final output of the network comes from the joint prediction by the classifiers on multi‐scale features, ensuring a stronger feature extraction capability. The extensive experiments have been carried on VOC and MS‐COCO datasets, and the superiority of MSFA over existing mainstream methods has been verified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
drtianyunhong完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
领导范儿应助good慧采纳,获得10
3秒前
yiriaoxianyu发布了新的文献求助10
3秒前
deletelzr完成签到,获得积分10
3秒前
xsk861777发布了新的文献求助10
4秒前
4秒前
时尚的雁易完成签到,获得积分10
4秒前
NexusExplorer应助lll采纳,获得10
5秒前
CodeCraft应助郭郭郭采纳,获得10
6秒前
ZHANG发布了新的文献求助30
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
chemj关注了科研通微信公众号
8秒前
Orange应助xsk861777采纳,获得10
8秒前
Plusonezzz完成签到,获得积分20
8秒前
田様应助YOUNG-M采纳,获得10
9秒前
zhangguo发布了新的文献求助10
10秒前
苹果千筹完成签到,获得积分10
10秒前
蛋筒发布了新的文献求助10
12秒前
浮游应助Plusonezzz采纳,获得10
13秒前
orixero应助薏_采纳,获得10
13秒前
14秒前
14秒前
wanci应助pan采纳,获得10
14秒前
斯文败类应助耍酷的雅阳采纳,获得20
14秒前
科研通AI2S应助Sara采纳,获得10
15秒前
15秒前
16秒前
杨杨杨发布了新的文献求助10
18秒前
lll发布了新的文献求助10
19秒前
MJJJ完成签到,获得积分10
19秒前
nana发布了新的文献求助10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617