Morphological estimation of primary branch length of individual apple trees during the deciduous period in modern orchard based on PointNet++

每年落叶的 果园 句号(音乐) 估计 人工智能 计算机科学 园艺 植物 生物 工程类 艺术 系统工程 美学
作者
Xiaoming Sun,Leilei He,Hanhui Jiang,Rui Li,Wulan Mao,Dong Zhang,Yaqoob Majeed,Nikita Andriyanov,Vladimir Soloviev,Longsheng Fu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108873-108873
标识
DOI:10.1016/j.compag.2024.108873
摘要

Primary branch length is an important morphological trait of individual apple tree phenotypes. This study presents a novel method for estimating the primary branch lengths of individual apple trees during the deciduous period by distinguishing their instances, i.e., merging those belonging to the same primary branch based on part segmentation outputs of PointNet++. Firstly, colored and colorless 3D-datasets were prepared for training PointNet++ models. The model with higher overall accuracy (OA), class average accuracy (CAA), and mean intersection-over-union (mIoU) was employed to segment the point cloud of a tree into primary branches (PB), trunk (TK), and end-points of primary branches (EPB) of individual apple trees. Skeletonization was applied to the outputs of the three parts of individual apple trees. Subsequently, each primary branch instance was distinguished by determining its corresponding path and retaining the longest path of the same primary branch only. Finally, the primary branch length was estimated by calculating the sum of Euclidean distances between adjacent points on the corresponding path. Results indicated that adding color to point clouds did not improve segmentation accuracy of PointNet++ on segmenting PB, TK, and EPB with similar color features. The PointNet++ model that was trained without color achieved an OA, CAA, and mIoU of 0.84, 0.83, and 0.70, respectively. The proportion of estimated and ground-truth values of the number of primary branches was 93.64 %. The mean absolute percentage error of estimating primary branch lengths was 12.00 %. These findings demonstrate that the proposed method is promising for high-throughput phenotyping of apple trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘忻完成签到,获得积分10
刚刚
1秒前
端庄的萝发布了新的文献求助20
1秒前
孟严青完成签到,获得积分10
1秒前
livra1058完成签到,获得积分10
1秒前
wonderting完成签到,获得积分10
1秒前
无敌小汐完成签到,获得积分10
2秒前
2秒前
圈圈发布了新的文献求助10
2秒前
EW完成签到,获得积分10
2秒前
3秒前
金鸡奖完成签到,获得积分10
3秒前
研友_LNB7rL完成签到,获得积分10
3秒前
11发布了新的文献求助10
4秒前
经法发布了新的文献求助10
4秒前
bjbbh完成签到,获得积分10
5秒前
Skyrin发布了新的文献求助10
5秒前
5秒前
阿蒙完成签到,获得积分10
6秒前
传奇3应助个木采纳,获得10
6秒前
6秒前
ShawnWei完成签到,获得积分10
6秒前
飘逸秋荷完成签到,获得积分10
6秒前
年年完成签到,获得积分10
6秒前
7秒前
7秒前
四季刻歌发布了新的文献求助20
7秒前
乐乐应助努力学习采纳,获得10
7秒前
7秒前
wwt完成签到,获得积分10
7秒前
7秒前
666完成签到,获得积分10
8秒前
Ripples完成签到,获得积分10
8秒前
9秒前
9秒前
赵哈哈完成签到,获得积分10
9秒前
10秒前
11秒前
小柠檬发布了新的文献求助10
11秒前
he发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678