Measuring transfer functions of track structures in a test rig with laser Doppler vibrometer and accelerometers on a moving vehicle

激光多普勒测振仪 加速度计 激光扫描测振法 声学 激光多普勒测速 多普勒效应 磁道(磁盘驱动器) 工程类 激光器 计算机科学 光学 物理 激光束 机械工程 医学 血流 天文 内科学 操作系统
作者
Yuanchen Zeng,Alfredo Núñez,Zili Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111392-111392
标识
DOI:10.1016/j.ymssp.2024.111392
摘要

A transfer function (TF) is an effective representation of the load-response relationship of railway track structures. To fill the gap in measuring track structure TFs over a wide frequency range from a moving vehicle, we develop a TF measurement system and the associated TF estimation methodology. Accelerometers are utilized to estimate the dynamic vehicle load to track structures, and a laser Doppler vibrometer (LDV) is used to scan track structures and measure their vibration response. First, operational modal analysis is applied to vehicle impact response over joints to identify its modal parameters, which support the estimation of dynamic wheel-rail forces from vehicle vibrations. This combination eliminates the need to pre-define the vehicle stiffness, vehicle damping, and vehicle body mass and enables the vehicle parameters to be updated under operational conditions. Meanwhile, a signal processing method is applied to LDV signals to reduce speckle noise and compensate for the effect of vehicle vibration. Then, a continuous track structure is segmented into distributed sections, and a TF is estimated for each track section using the estimated wheel-rail force as input and the extracted track vibration as output. We validate the methodology in a vehicle-track test rig on different track sections (with or without joints) and at different speeds (from 8 km/h to 16 km/h). The results are further compared with trackside measurements and hammer tests. We demonstrate that the track vibrations extracted from the LDV signals are consistent with those measured by trackside accelerometers. The shapes and resonance frequencies of the estimated TFs are in good agreement with those measured from the hammer tests in the frequency range of 200–800 Hz. The developed system captures differences in the TFs between different track sections, suggesting its potential to be used for structural health monitoring of railway tracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吨吨喝水关注了科研通微信公众号
1秒前
酷波er应助某只橘猫君采纳,获得10
1秒前
1秒前
stt发布了新的文献求助10
1秒前
1秒前
Ling完成签到,获得积分10
1秒前
TanFT完成签到,获得积分10
2秒前
笙歌自若发布了新的文献求助10
2秒前
2秒前
CipherSage应助积极的凌波采纳,获得10
3秒前
3秒前
烟花应助欣慰硬币采纳,获得10
3秒前
老大爷滴滴完成签到,获得积分10
3秒前
3秒前
3秒前
SciGPT应助LEMON采纳,获得10
4秒前
搜集达人应助叶飞荷采纳,获得10
4秒前
wxy完成签到,获得积分10
4秒前
5秒前
弄香完成签到,获得积分10
5秒前
gguc完成签到,获得积分10
5秒前
5秒前
无聊又夏完成签到,获得积分10
6秒前
今后应助木野狐采纳,获得10
6秒前
7秒前
小木木壮发布了新的文献求助10
7秒前
7秒前
7秒前
欢喜从霜发布了新的文献求助10
7秒前
8秒前
Ll发布了新的文献求助10
8秒前
茶艺如何发布了新的文献求助10
9秒前
落后秋柳发布了新的文献求助10
9秒前
科研通AI5应助大方嵩采纳,获得10
9秒前
10秒前
10秒前
海鸥海鸥发布了新的文献求助10
10秒前
南敏株完成签到,获得积分10
11秒前
稳重完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762