Toward Precision Diagnosis

计算机科学
作者
Emma O’Shaughnessy,Lucile Sénicourt,Natasha Mambour,Julien Savatovsky,Loïc Duron,Augustin Lecler
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (10): 737-745 被引量:1
标识
DOI:10.1097/rli.0000000000001076
摘要

Background Orbital tumors present a diagnostic challenge due to their varied locations and histopathological differences. Although recent advancements in imaging have improved diagnosis, classification remains a challenge. The integration of artificial intelligence in radiology and ophthalmology has demonstrated promising outcomes. Purpose This study aimed to evaluate the performance of machine learning models in accurately distinguishing malignant orbital tumors from benign ones using multiparametric 3 T magnetic resonance imaging (MRI) data. Materials and Methods In this single-center prospective study, patients with orbital masses underwent presurgery 3 T MRI scans between December 2015 and May 2021. The MRI protocol comprised multiparametric imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), as well as morphological imaging acquisitions. A repeated nested cross-validation strategy using random forest classifiers was used for model training and evaluation, considering 8 combinations of explanatory features. Shapley additive explanations (SHAP) values were used to assess feature contributions, and the model performance was evaluated using multiple metrics. Results One hundred thirteen patients were analyzed (57/113 [50.4%] were women; average age was 51.5 ± 17.5 years, range: 19–88 years). Among the 8 combinations of explanatory features assessed, the performance on predicting malignancy when using the most comprehensive model, which is the most exhaustive one incorporating all 46 explanatory features—including morphology, DWI, DCE, and IVIM, achieved an area under the curve of 0.9 [0.73–0.99]. When using the streamlined “10-feature signature” model, performance reached an area under the curve of 0.88 [0.71–0.99]. Random forest feature importance graphs measured by the mean of SHAP values pinpointed the 10 most impactful features, which comprised 3 quantitative IVIM features, 4 quantitative DCE features, 1 quantitative DWI feature, 1 qualitative DWI feature, and age. Conclusions Our findings demonstrate that a machine learning approach, integrating multiparametric MRI data such as DCE, DWI, IVIM, and morphological imaging, offers high-performing models for differentiating malignant from benign orbital tumors. The streamlined 10-feature signature, with a performance close to the comprehensive model, may be more suitable for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力出奇迹完成签到,获得积分10
1秒前
琥珀完成签到,获得积分10
2秒前
2秒前
小二郎应助钱多多采纳,获得10
3秒前
烟花应助zuoyou采纳,获得10
3秒前
Akim应助孙某人采纳,获得10
3秒前
3秒前
Ternura发布了新的文献求助10
4秒前
狗熊岭在逃翠花完成签到,获得积分10
4秒前
5秒前
田様应助琥珀采纳,获得10
6秒前
李爱国应助超帅采纳,获得10
7秒前
尼古拉发布了新的文献求助10
8秒前
学术武陵人完成签到,获得积分10
9秒前
wanci应助123采纳,获得10
9秒前
10秒前
11秒前
12秒前
秀儿驳回了Yuzu应助
12秒前
泡芙完成签到,获得积分10
13秒前
15秒前
钱多多发布了新的文献求助10
15秒前
哎哟我去完成签到,获得积分10
15秒前
高高凡完成签到,获得积分10
15秒前
16秒前
bkagyin应助无敌娜采纳,获得10
16秒前
sssssnape发布了新的文献求助10
17秒前
唠叨的友容应助cindy采纳,获得10
17秒前
Wellnemo发布了新的文献求助10
17秒前
19秒前
顾矜应助花卷采纳,获得10
19秒前
琥珀发布了新的文献求助10
20秒前
BBIBBI完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
24秒前
CipherSage应助舒心的秋荷采纳,获得10
25秒前
25秒前
daydayup完成签到,获得积分10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416546
求助须知:如何正确求助?哪些是违规求助? 3018380
关于积分的说明 8884060
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483862
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 680985