已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An application of machine learning for material crack diagnosis using nonlinear ultrasonics

非线性系统 计算机科学 材料科学 结构工程 声学 工程类 物理 量子力学
作者
J Y Lee,Sang Eon Lee,Suyeong Jin,Hoon Sohn,Jung‐Wuk Hong
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111371-111371 被引量:5
标识
DOI:10.1016/j.ymssp.2024.111371
摘要

Crack diagnosis in non-destructive testing often requires reference data from the structure before damage or a considerable amount of response data. Also, detecting compression cracks is challenging. In this study, a machine learning-based method is proposed for diagnosing cracks in structures under compression. The method consists of convolutional neural networks (CNN) and fully connected networks (FCN). The CNN extracts features from nonlinear ultrasonic signal data, and the features determine the occurrence of fatigue cracks in a target specimen. Four types of input data are defined in accordance with the number of input frequency combinations. The performance of the proposed method is investigated using each data type to secure efficiency and accuracy in diagnosing aluminum specimens under various compression conditions. As a result, the F1 score, a measure of accuracy, of the proposed method depends on the number of input frequency combinations. The method detects high-compression cracks with high accuracy compared to the present technology specialized for compression cracks in a certain data type. A high accuracy of more than 96% is achieved with less computation time. The proposed method will provide an accurate crack diagnosis for compression cracks with reduced time and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
moci123完成签到 ,获得积分10
2秒前
2秒前
爱笑愚志完成签到 ,获得积分10
2秒前
wwf完成签到,获得积分10
3秒前
酷酷问夏完成签到 ,获得积分10
3秒前
4秒前
李燕完成签到,获得积分10
5秒前
Leon完成签到,获得积分10
5秒前
6秒前
努力的淼淼完成签到 ,获得积分10
7秒前
Goin发布了新的文献求助10
7秒前
布同完成签到,获得积分0
7秒前
Yu完成签到 ,获得积分10
7秒前
科研通AI6应助ling采纳,获得10
8秒前
HarryYang完成签到 ,获得积分10
8秒前
LUFFY发布了新的文献求助10
8秒前
英姑应助Jane采纳,获得30
8秒前
lucy完成签到,获得积分10
9秒前
可爱安白完成签到,获得积分10
10秒前
布曲完成签到 ,获得积分10
10秒前
淡然丹寒完成签到 ,获得积分10
10秒前
张ZWY完成签到 ,获得积分10
11秒前
丘比特应助繁荣的南风采纳,获得10
11秒前
巫衣絮完成签到 ,获得积分10
12秒前
善学以致用应助Unicorn采纳,获得10
13秒前
mbq完成签到,获得积分10
13秒前
hrs完成签到 ,获得积分10
13秒前
支寄灵完成签到,获得积分10
13秒前
Tumumu完成签到,获得积分10
14秒前
认真的寒香完成签到,获得积分10
16秒前
研友_ngX12Z完成签到 ,获得积分10
16秒前
山山完成签到 ,获得积分10
16秒前
孤灯剑客完成签到,获得积分10
16秒前
wfw完成签到,获得积分10
17秒前
cyy完成签到,获得积分10
17秒前
耳东完成签到 ,获得积分10
19秒前
昏睡的铭完成签到,获得积分10
19秒前
周萌完成签到 ,获得积分10
19秒前
学术霸王完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571