A single-frame infrared small target detection method based on joint feature guidance

接头(建筑物) 帧(网络) 特征(语言学) 人工智能 计算智能 计算机科学 红外线的 模式识别(心理学) 计算机视觉 工程类 电信 物理 光学 结构工程 语言学 哲学
作者
Xiaoyu Xu,Weida Zhan,Yichun Jiang,Depeng Zhu,Yu Chen,Jinxin Guo,Jin Li,Yanyan Liu
出处
期刊:Complex & Intelligent Systems
标识
DOI:10.1007/s40747-024-01410-6
摘要

Abstract Single-frame infrared small target detection is affected by the low image resolution and small target size, and is prone to the problems of small target feature loss and positional offset during continuous downsampling; at the same time, the sparse features of the small targets do not correlate well with the global-local linkage of the background features. To solve the above problems, this paper proposes an efficient infrared small target detection method. First, this paper incorporates BlurPool in the feature extraction part, which reduces the loss and positional offset of small target features in the process of convolution and pooling. Second, this paper designs an interactive attention deep feature fusion module, which acquires the correlation information between the target and the background from a global perspective, and designs a compression mechanism based on deep a priori knowledge, which reduces the computational difficulty of the self-attention mechanism. Then, this paper designs the context local feature enhancement and fusion module, which uses deep semantic features to dynamically guide shallow local features to realize enhancement and fusion. Finally, this paper proposes an edge feature extraction module for shallow features, which utilizes the complete texture and location information in the shallow features to assist the network to initially locate the target position and edge shape. Numerous experiments show that the method in this paper significantly improves nIoU, F1-Measure and AUC on IRSTD-1k Datasets and NUAA-SIRST Datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的如风完成签到,获得积分10
刚刚
1秒前
吃猫的鱼完成签到,获得积分10
1秒前
脑洞疼应助润润轩轩采纳,获得10
2秒前
刘文静完成签到,获得积分10
3秒前
Southluuu发布了新的文献求助10
3秒前
chenjyuu发布了新的文献求助10
3秒前
3秒前
粗暴的仙人掌完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
logic发布了新的文献求助10
4秒前
习习应助生动的雨竹采纳,获得10
4秒前
bo完成签到 ,获得积分10
4秒前
迟大猫应助啵乐乐采纳,获得10
5秒前
安雯完成签到 ,获得积分10
5秒前
HuLL完成签到,获得积分10
5秒前
Yolo完成签到 ,获得积分10
5秒前
难过的慕青完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
8秒前
无花果应助sunzhiyu233采纳,获得10
8秒前
韭黄完成签到,获得积分20
8秒前
9秒前
诚c发布了新的文献求助10
9秒前
自然秋柳完成签到 ,获得积分10
9秒前
我是老大应助经法采纳,获得10
9秒前
默默的皮牙子应助经法采纳,获得10
9秒前
orixero应助经法采纳,获得10
9秒前
小马甲应助经法采纳,获得10
9秒前
柚子成精应助经法采纳,获得10
10秒前
小蘑菇应助经法采纳,获得10
10秒前
深情安青应助经法采纳,获得10
10秒前
李爱国应助经法采纳,获得10
10秒前
共享精神应助经法采纳,获得10
10秒前
yyyyyy完成签到 ,获得积分10
10秒前
LL完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759