Adaptive Intermediate Class-Wise Distribution Alignment: A Universal Domain Adaptation and Generalization Method for Machine Fault Diagnosis

计算机科学 Softmax函数 人工智能 算法 机器学习 人工神经网络
作者
Quan Qian,Jun Luo,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:44
标识
DOI:10.1109/tnnls.2024.3376449
摘要

Many transfer learning methods have been proposed to implement fault transfer diagnosis, and their loss functions are usually composed of task-related losses, distribution distance losses, and correlation regularization losses. The intrinsic parameters and trade-off parameters between losses, however, need to be tuned according to the specific diagnosis tasks; thus, the generalization abilities of these methods in multiple tasks are limited. Besides, the alignment goal of most domain adaptation (DA) mechanisms dynamically changes during the training process, which will result in loss oscillation, slow convergence and poor robustness. To overcome the above-mentioned issues, a novel and simple transfer learning diagnosis method named adaptive intermediate class-wise distribution alignment (AICDA) model is proposed, and it is established via the proposed AICDA mechanism, dynamic intermediate alignment (DIA) adaptive layer and AdaSoftmax loss. The AICDA mechanism develops an adaptive intermediate distribution as the alignment goal of multiple source domains and target domains, and it can simultaneously align the global and class-wise distributions of these domains. The DIA layer is designed to adaptively achieve domain confusion without the distribution distance loss and the correlation regularization loss. Meanwhile, to ensure the classification performance of the AICDA mechanism, AdaSoftmax loss is proposed for boosting the separability of Softmax loss. Finally, in order to evaluate the effectiveness and universality of the AICDA diagnosis model to the most degree, various multisource mixed fault transfer diagnosis tasks of wind turbine planetary gearboxes, including DA and domain generalization (DG), are implemented, and the experimental results indicate that our proposed AICDA model has a higher diagnosis accuracy and a stronger generalization ability than other state-of-the-art transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
无算浮白完成签到,获得积分10
刚刚
aldeheby发布了新的文献求助30
1秒前
Ran发布了新的文献求助10
1秒前
JamesPei应助黄鹦鹉采纳,获得10
1秒前
烟花应助Zxc采纳,获得10
2秒前
ding应助LFY采纳,获得10
2秒前
YUAN发布了新的文献求助10
2秒前
雨落and夏末完成签到 ,获得积分10
2秒前
3秒前
4秒前
5秒前
5秒前
zgnh发布了新的文献求助10
7秒前
8秒前
炙热迎波完成签到,获得积分10
8秒前
CGFHEMAN完成签到 ,获得积分10
10秒前
小天小天完成签到,获得积分10
10秒前
夏天发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
14秒前
万能图书馆应助whuhustwit采纳,获得10
15秒前
hsy发布了新的文献求助10
17秒前
明天更好完成签到 ,获得积分10
17秒前
小宝妈发布了新的文献求助10
17秒前
Criminology34应助清秀煎饼采纳,获得10
17秒前
又村完成签到 ,获得积分10
17秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
陈末应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
abynn应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
20秒前
爱吃猫的鱼完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800