已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive Intermediate Class-Wise Distribution Alignment: A Universal Domain Adaptation and Generalization Method for Machine Fault Diagnosis

计算机科学 Softmax函数 人工智能 算法 机器学习 人工神经网络
作者
Quan Qian,Jun Luo,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:44
标识
DOI:10.1109/tnnls.2024.3376449
摘要

Many transfer learning methods have been proposed to implement fault transfer diagnosis, and their loss functions are usually composed of task-related losses, distribution distance losses, and correlation regularization losses. The intrinsic parameters and trade-off parameters between losses, however, need to be tuned according to the specific diagnosis tasks; thus, the generalization abilities of these methods in multiple tasks are limited. Besides, the alignment goal of most domain adaptation (DA) mechanisms dynamically changes during the training process, which will result in loss oscillation, slow convergence and poor robustness. To overcome the above-mentioned issues, a novel and simple transfer learning diagnosis method named adaptive intermediate class-wise distribution alignment (AICDA) model is proposed, and it is established via the proposed AICDA mechanism, dynamic intermediate alignment (DIA) adaptive layer and AdaSoftmax loss. The AICDA mechanism develops an adaptive intermediate distribution as the alignment goal of multiple source domains and target domains, and it can simultaneously align the global and class-wise distributions of these domains. The DIA layer is designed to adaptively achieve domain confusion without the distribution distance loss and the correlation regularization loss. Meanwhile, to ensure the classification performance of the AICDA mechanism, AdaSoftmax loss is proposed for boosting the separability of Softmax loss. Finally, in order to evaluate the effectiveness and universality of the AICDA diagnosis model to the most degree, various multisource mixed fault transfer diagnosis tasks of wind turbine planetary gearboxes, including DA and domain generalization (DG), are implemented, and the experimental results indicate that our proposed AICDA model has a higher diagnosis accuracy and a stronger generalization ability than other state-of-the-art transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆哥完成签到 ,获得积分10
2秒前
幽凡完成签到 ,获得积分10
2秒前
彭于晏应助小羊肖恩采纳,获得30
3秒前
林谷雨完成签到,获得积分10
3秒前
炸鸡完成签到 ,获得积分10
3秒前
yu发布了新的文献求助10
4秒前
犹豫的星星完成签到,获得积分10
5秒前
毓香谷的春天完成签到 ,获得积分0
5秒前
机智若云完成签到,获得积分0
5秒前
不开心就吃糖完成签到 ,获得积分10
5秒前
骏驰天下完成签到,获得积分10
5秒前
XinEr完成签到 ,获得积分10
6秒前
小zz完成签到 ,获得积分10
6秒前
云淡风轻一宝完成签到,获得积分10
7秒前
chens627发布了新的文献求助10
8秒前
江姜酱先生完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
GingerF应助科研通管家采纳,获得200
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
恋雅颖月完成签到 ,获得积分10
8秒前
拼搏蜻蜓完成签到 ,获得积分10
9秒前
天人合一完成签到,获得积分0
9秒前
paleo-地质完成签到,获得积分10
9秒前
平淡道天完成签到,获得积分10
9秒前
老师心腹大患完成签到,获得积分10
9秒前
科研通AI5应助eblog采纳,获得10
9秒前
木马上市完成签到,获得积分10
9秒前
Yi完成签到,获得积分10
9秒前
潇潇完成签到 ,获得积分10
10秒前
蚯蚓滑蛋发布了新的文献求助10
10秒前
科研的熊完成签到,获得积分10
10秒前
络桵完成签到,获得积分10
10秒前
gmchen完成签到,获得积分10
10秒前
啊哒吸哇完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581156
求助须知:如何正确求助?哪些是违规求助? 3999138
关于积分的说明 12380772
捐赠科研通 3673660
什么是DOI,文献DOI怎么找? 2024693
邀请新用户注册赠送积分活动 1058565
科研通“疑难数据库(出版商)”最低求助积分说明 945253

今日热心研友

GingerF
200
所所
10
斯文败类
10
Ma
1
小明
1
坚定的滑板
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10