Adaptive Intermediate Class-Wise Distribution Alignment: A Universal Domain Adaptation and Generalization Method for Machine Fault Diagnosis

计算机科学 Softmax函数 人工智能 算法 机器学习 人工神经网络
作者
Qian Qi,Jun Luo,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tnnls.2024.3376449
摘要

Many transfer learning methods have been proposed to implement fault transfer diagnosis, and their loss functions are usually composed of task-related losses, distribution distance losses, and correlation regularization losses. The intrinsic parameters and trade-off parameters between losses, however, need to be tuned according to the specific diagnosis tasks; thus, the generalization abilities of these methods in multiple tasks are limited. Besides, the alignment goal of most domain adaptation (DA) mechanisms dynamically changes during the training process, which will result in loss oscillation, slow convergence and poor robustness. To overcome the above-mentioned issues, a novel and simple transfer learning diagnosis method named adaptive intermediate class-wise distribution alignment (AICDA) model is proposed, and it is established via the proposed AICDA mechanism, dynamic intermediate alignment (DIA) adaptive layer and AdaSoftmax loss. The AICDA mechanism develops an adaptive intermediate distribution as the alignment goal of multiple source domains and target domains, and it can simultaneously align the global and class-wise distributions of these domains. The DIA layer is designed to adaptively achieve domain confusion without the distribution distance loss and the correlation regularization loss. Meanwhile, to ensure the classification performance of the AICDA mechanism, AdaSoftmax loss is proposed for boosting the separability of Softmax loss. Finally, in order to evaluate the effectiveness and universality of the AICDA diagnosis model to the most degree, various multisource mixed fault transfer diagnosis tasks of wind turbine planetary gearboxes, including DA and domain generalization (DG), are implemented, and the experimental results indicate that our proposed AICDA model has a higher diagnosis accuracy and a stronger generalization ability than other state-of-the-art transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜于飞薇发布了新的文献求助10
1秒前
传奇3应助羞涩的高山采纳,获得10
1秒前
酷波er应助study_0001采纳,获得50
1秒前
领导范儿应助liulongchao采纳,获得10
3秒前
小虎发布了新的文献求助10
4秒前
6秒前
独特伟泽完成签到,获得积分10
6秒前
jiang完成签到,获得积分10
6秒前
beibei应助guanshujuan采纳,获得10
6秒前
云瑾应助guanshujuan采纳,获得10
6秒前
yuqinghui98发布了新的文献求助10
7秒前
若楼兰不死完成签到,获得积分10
8秒前
淡淡梦容完成签到,获得积分10
8秒前
独特伟泽发布了新的文献求助10
10秒前
12秒前
传奇3应助LX采纳,获得10
12秒前
13秒前
思源应助卷毛毛采纳,获得10
13秒前
科研通AI2S应助阿中采纳,获得10
14秒前
Akim应助马婷婷采纳,获得10
14秒前
15秒前
liulongchao发布了新的文献求助10
16秒前
16秒前
斯文败类应助奶姜采纳,获得10
16秒前
17秒前
18秒前
上官若男应助单纯晋鹏采纳,获得10
18秒前
安详的蜻蜓完成签到,获得积分10
19秒前
冷傲星月发布了新的文献求助10
20秒前
zho应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
哥斯拉完成签到,获得积分20
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158219
求助须知:如何正确求助?哪些是违规求助? 2809498
关于积分的说明 7882396
捐赠科研通 2468007
什么是DOI,文献DOI怎么找? 1313841
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943