亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Intermediate Class-Wise Distribution Alignment: A Universal Domain Adaptation and Generalization Method for Machine Fault Diagnosis

计算机科学 Softmax函数 人工智能 算法 机器学习 人工神经网络
作者
Quan Qian,Jun Luo,Yi Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:44
标识
DOI:10.1109/tnnls.2024.3376449
摘要

Many transfer learning methods have been proposed to implement fault transfer diagnosis, and their loss functions are usually composed of task-related losses, distribution distance losses, and correlation regularization losses. The intrinsic parameters and trade-off parameters between losses, however, need to be tuned according to the specific diagnosis tasks; thus, the generalization abilities of these methods in multiple tasks are limited. Besides, the alignment goal of most domain adaptation (DA) mechanisms dynamically changes during the training process, which will result in loss oscillation, slow convergence and poor robustness. To overcome the above-mentioned issues, a novel and simple transfer learning diagnosis method named adaptive intermediate class-wise distribution alignment (AICDA) model is proposed, and it is established via the proposed AICDA mechanism, dynamic intermediate alignment (DIA) adaptive layer and AdaSoftmax loss. The AICDA mechanism develops an adaptive intermediate distribution as the alignment goal of multiple source domains and target domains, and it can simultaneously align the global and class-wise distributions of these domains. The DIA layer is designed to adaptively achieve domain confusion without the distribution distance loss and the correlation regularization loss. Meanwhile, to ensure the classification performance of the AICDA mechanism, AdaSoftmax loss is proposed for boosting the separability of Softmax loss. Finally, in order to evaluate the effectiveness and universality of the AICDA diagnosis model to the most degree, various multisource mixed fault transfer diagnosis tasks of wind turbine planetary gearboxes, including DA and domain generalization (DG), are implemented, and the experimental results indicate that our proposed AICDA model has a higher diagnosis accuracy and a stronger generalization ability than other state-of-the-art transfer learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
al完成签到 ,获得积分10
刚刚
6秒前
10秒前
ww发布了新的文献求助10
15秒前
ww发布了新的文献求助10
36秒前
48秒前
48秒前
依霏发布了新的文献求助10
51秒前
59秒前
shenglue发布了新的文献求助10
1分钟前
丘比特应助依霏采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
rrrrrrry发布了新的文献求助20
1分钟前
ww发布了新的文献求助20
1分钟前
岁和景明完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
fenfen发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
2分钟前
ww发布了新的文献求助10
2分钟前
xuan完成签到,获得积分10
2分钟前
大模型应助fenfen采纳,获得10
3分钟前
我是站长才怪应助西子阳采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
我是站长才怪给twotwomi的求助进行了留言
3分钟前
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
ww发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ww发布了新的文献求助10
4分钟前
cyclone发布了新的文献求助10
4分钟前
Sandy发布了新的文献求助10
5分钟前
科研通AI5应助cyclone采纳,获得10
5分钟前
我是站长才怪给twotwomi的求助进行了留言
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015073
求助须知:如何正确求助?哪些是违规求助? 3555011
关于积分的说明 11317842
捐赠科研通 3288529
什么是DOI,文献DOI怎么找? 1812249
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983