YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sinner完成签到,获得积分10
刚刚
胡萝卜和小灰兔完成签到 ,获得积分10
刚刚
Dd18753801528发布了新的文献求助10
1秒前
科目三应助飞翔的星尘采纳,获得30
1秒前
张宇锋完成签到,获得积分10
2秒前
2秒前
英俊的铭应助FZL采纳,获得10
3秒前
3秒前
3秒前
大白发布了新的文献求助10
4秒前
5秒前
123321发布了新的文献求助10
6秒前
mellow343发布了新的文献求助10
7秒前
8秒前
小蘑菇应助何必觅忧愁采纳,获得10
8秒前
江望雪完成签到,获得积分10
9秒前
高大的天晴完成签到,获得积分10
10秒前
13秒前
科研通AI6应助落苏潮海采纳,获得80
13秒前
mellow343完成签到,获得积分10
13秒前
14秒前
可爱的函函应助大白采纳,获得10
14秒前
充电宝应助123采纳,获得10
14秒前
天天快乐应助是温柔本身采纳,获得10
14秒前
18298859129完成签到,获得积分10
15秒前
小米完成签到,获得积分10
16秒前
所所应助早睡早起采纳,获得10
22秒前
22秒前
22秒前
Ava应助77采纳,获得10
27秒前
28秒前
28秒前
哭泣的宛丝完成签到,获得积分10
28秒前
Hello应助Dd18753801528采纳,获得10
29秒前
安瑞巴蒂完成签到,获得积分10
29秒前
浮游应助怕孤独的豁采纳,获得10
30秒前
刘骁萱完成签到 ,获得积分10
30秒前
善良又亦完成签到,获得积分10
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355546
求助须知:如何正确求助?哪些是违规求助? 4487473
关于积分的说明 13970113
捐赠科研通 4388096
什么是DOI,文献DOI怎么找? 2410888
邀请新用户注册赠送积分活动 1403438
关于科研通互助平台的介绍 1376951