YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助lllll采纳,获得10
刚刚
YH完成签到,获得积分10
刚刚
guohang发布了新的文献求助10
刚刚
刚刚
小丑鱼完成签到,获得积分20
刚刚
明天见完成签到 ,获得积分10
1秒前
Anna发布了新的文献求助10
1秒前
风雨中飘摇应助大家好采纳,获得30
1秒前
小星星完成签到,获得积分20
2秒前
朝花夕拾发布了新的文献求助10
2秒前
besatified完成签到,获得积分10
2秒前
kui水买完成签到,获得积分10
3秒前
dyy发布了新的文献求助10
3秒前
LiuShenglan发布了新的文献求助10
3秒前
Yatpome发布了新的文献求助10
3秒前
4秒前
Owen应助zjd采纳,获得10
4秒前
松大宝完成签到,获得积分10
4秒前
feihua1完成签到 ,获得积分10
4秒前
wanci应助吼吼吼采纳,获得10
4秒前
www完成签到,获得积分10
4秒前
林临林完成签到,获得积分10
5秒前
多喝水完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
独特的沛凝完成签到,获得积分10
6秒前
科研通AI2S应助KDS采纳,获得10
6秒前
ambrose37完成签到 ,获得积分10
6秒前
万能图书馆应助大熊采纳,获得10
6秒前
quhayley应助CXS采纳,获得30
6秒前
6秒前
安子完成签到 ,获得积分10
8秒前
安子完成签到 ,获得积分10
8秒前
缥缈梦柏完成签到,获得积分10
8秒前
辛勤的乌完成签到,获得积分10
8秒前
uu完成签到,获得积分10
10秒前
鲤鱼寒荷完成签到,获得积分10
10秒前
10秒前
微义完成签到,获得积分10
10秒前
简单花花发布了新的文献求助10
11秒前
johnny完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960337
求助须知:如何正确求助?哪些是违规求助? 3506438
关于积分的说明 11130396
捐赠科研通 3238607
什么是DOI,文献DOI怎么找? 1789826
邀请新用户注册赠送积分活动 871947
科研通“疑难数据库(出版商)”最低求助积分说明 803099