YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayue发布了新的文献求助10
刚刚
其华完成签到 ,获得积分10
1秒前
搜集达人应助fagfagsf采纳,获得10
1秒前
kkkk完成签到,获得积分10
2秒前
小马甲应助活泼冬云采纳,获得10
2秒前
lalala发布了新的文献求助10
3秒前
乐观白桃发布了新的文献求助30
3秒前
3秒前
chan完成签到,获得积分10
3秒前
三岁就爱笑完成签到,获得积分10
4秒前
qwq睡了吗铁柱完成签到,获得积分10
5秒前
Yimi完成签到,获得积分10
5秒前
生动的半山完成签到,获得积分10
5秒前
6秒前
雁塔吃辣条完成签到,获得积分10
6秒前
liu bo完成签到,获得积分10
6秒前
纪间发布了新的文献求助10
7秒前
Miller应助寒冷乐驹采纳,获得10
7秒前
dxj完成签到,获得积分10
7秒前
ALONE完成签到,获得积分10
8秒前
科研12345完成签到 ,获得积分10
9秒前
TT发布了新的文献求助10
9秒前
超帅洋葱完成签到,获得积分10
9秒前
heiehihahah关注了科研通微信公众号
11秒前
文献查找完成签到,获得积分10
11秒前
FashionBoy应助ALONE采纳,获得10
12秒前
13秒前
13秒前
王九八发布了新的文献求助10
14秒前
Owen应助超帅洋葱采纳,获得10
14秒前
15秒前
千亦完成签到,获得积分10
16秒前
zsc完成签到,获得积分10
16秒前
TT2022发布了新的文献求助10
17秒前
17秒前
香蕉觅云应助Lazarus_x采纳,获得10
18秒前
小花完成签到 ,获得积分10
18秒前
lwb0716完成签到,获得积分10
19秒前
斯文败类应助棕泡泡鸡采纳,获得30
19秒前
完美世界应助M20小陈采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587