YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
菜饼哥发布了新的文献求助10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
ting应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
arniu2008应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
ting应助科研通管家采纳,获得10
刚刚
靓丽三德应助科研通管家采纳,获得10
刚刚
hqyqh1314完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得30
1秒前
Jason应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
ding应助Natasha采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
情怀应助zhou国兵采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
热情薯片完成签到,获得积分10
1秒前
Jason应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718886
求助须知:如何正确求助?哪些是违规求助? 5254421
关于积分的说明 15287351
捐赠科研通 4868927
什么是DOI,文献DOI怎么找? 2614473
邀请新用户注册赠送积分活动 1564399
关于科研通互助平台的介绍 1521791