YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
IMP完成签到 ,获得积分10
1秒前
1秒前
sihongyi完成签到,获得积分20
2秒前
2秒前
深深完成签到,获得积分10
2秒前
2秒前
Hanif5329完成签到,获得积分10
3秒前
Wang完成签到,获得积分20
3秒前
在水一方应助ximi采纳,获得10
3秒前
瑶瑶酱完成签到,获得积分10
3秒前
Nil完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Pluminata发布了新的文献求助10
5秒前
可爱的函函应助雷雷采纳,获得10
5秒前
CRANE发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
tangyuan发布了新的文献求助10
5秒前
科研通AI6应助现代宛丝采纳,获得10
6秒前
王可发布了新的文献求助10
6秒前
WEILAI完成签到 ,获得积分10
6秒前
大漂亮发布了新的文献求助10
6秒前
andy发布了新的文献求助10
8秒前
清浅发布了新的文献求助10
8秒前
8秒前
hhhyyyy完成签到,获得积分10
8秒前
9秒前
Goyounjung发布了新的文献求助10
9秒前
紫瓜发布了新的文献求助30
9秒前
9秒前
坚定的草丛完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
wanci应助HonneursW采纳,获得10
11秒前
顾矜应助copper采纳,获得10
11秒前
一颗糖完成签到 ,获得积分10
11秒前
12秒前
素简发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082