YOLOv8-BYTE: Ship tracking algorithm using short-time sequence SAR images for disaster response leveraging GeoAI

字节 序列(生物学) 计算机科学 跟踪(教育) 算法 计算机视觉 地理 人工智能 计算机图形学(图像) 地图学 计算机硬件 社会学 教育学 遗传学 生物
作者
Muhammad Yasir,Shanwei Liu,Mingming Xu,Jianhua Wan,Hui Sheng,Shah Nazir,Xin Zhang,Arife Tugsan Isiacik Colak
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103771-103771 被引量:2
标识
DOI:10.1016/j.jag.2024.103771
摘要

Ship tracking technology is crucial for emergency rescue in the event of a disaster. Quickly identifying the position and status of vessels is vital for rescue teams to be able to deploy efficiently in disaster areas. When responding to emergencies or natural disasters, ship tracking technology plays a critical role in supporting emergency rescue operations and resource allocation, improving the overall resilience of the maritime transportation system. However, the research on multi-object tracking (MOT) algorithms has primarily focused on optical image datasets. In contrast, image data from synthetic aperture radar (SAR) presents unique challenges, such as defocus interference, a high false alarm rate, and a lack of prior samples. To overcome these particular challenges, we propose a robust MOT algorithm developed for SAR images to achieve effective multi-vessel tracking under difficult imaging conditions. In particular, we optimize the YOLOv8 detection network by introducing a diffusion model-based training method for data augmentation. This method improves the robustness of the network to scaling, rotational and translational deformations. Moreover, an enhanced swin transformer is proposed as a feature extraction network, which strengthens the representation capability of the detection network. Furthermore, the state parameters within the KF technique are enhanced by directly capturing the details of the height and width of the tracking rectangle box. This refinement of the ByteTrack algorithm aims to achieve a more precise and accurate fit of the tracking rectangle to the ship, further improving the overall tracking performance. The experimental results from the ship detection and multiple objects tracking datasets show the impressive performance of the proposed model. With a precision of 97.60%, a recall of 96.36%, and an average precision of 96.72%, the model achieves exceptional detection accuracy with an 18% reduction in model parameters. Furthermore, significant improvements can be observed in key tracking metrics such as HOTA, MOTA and IDF1, with improvements of 4.8%, 8.5% and 6.8% respectively compared to the baseline algorithm, alongside a remarkable 37.5% reduction in IDS. It is noteworthy that the tracker works in real time, achieving an average analysis speed of 47 frames per second. The proposed MOT algorithm achieves state-of-art tracking performance on a SAR image dataset with short time sequences. Therefore, the proposed approach is a compelling solution for ship tracking in SAR imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助山谷采纳,获得10
1秒前
完美世界应助一念春风采纳,获得30
1秒前
Ava应助黄123采纳,获得10
3秒前
安详念蕾发布了新的文献求助10
3秒前
cheng完成签到,获得积分10
3秒前
大个应助ZY采纳,获得10
3秒前
张文博发布了新的文献求助10
3秒前
可爱的函函应助刘淼采纳,获得10
3秒前
Shan完成签到,获得积分10
4秒前
yyl发布了新的文献求助10
4秒前
niqiu完成签到 ,获得积分10
4秒前
LGChemistry完成签到,获得积分20
4秒前
zlf发布了新的文献求助10
4秒前
充电宝应助柠檬不吃酸采纳,获得10
5秒前
5秒前
7秒前
7秒前
桐桐应助mf采纳,获得10
7秒前
赘婿应助nenoaowu采纳,获得10
7秒前
7秒前
Masvidog完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
苗条念云完成签到,获得积分10
9秒前
SciGPT应助会飞的玉米采纳,获得10
10秒前
windy发布了新的文献求助10
10秒前
英俊的铭应助大橘为重采纳,获得10
10秒前
红茶猫完成签到,获得积分10
10秒前
10秒前
11秒前
你奈我何完成签到,获得积分10
12秒前
顾矜应助天天向上采纳,获得10
12秒前
xn完成签到,获得积分20
12秒前
13秒前
充电宝应助11_aa采纳,获得10
13秒前
14秒前
科研dog完成签到,获得积分10
14秒前
14秒前
脓脓的桃子酱关注了科研通微信公众号
15秒前
15秒前
Koi发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004504
求助须知:如何正确求助?哪些是违规求助? 4248551
关于积分的说明 13237415
捐赠科研通 4047961
什么是DOI,文献DOI怎么找? 2214584
邀请新用户注册赠送积分活动 1224520
关于科研通互助平台的介绍 1145015