着丝粒
酵母人工染色体
染色质
人类人工染色体
染色体分离
表观遗传学
染色体
背景(考古学)
生物
DNA
计算生物学
遗传学
基因
基因定位
古生物学
作者
Craig W. Gambogi,Gabriel J. Birchak,Elie Mer,David Brown,George Yankson,Kathryn Kixmoeller,Janardan N. Gavade,Josh L. Espinoza,Prakriti Kashyap,Christopher L. Dupont,Glennis A. Logsdon,Patrick Heun,John I. Glass,Ben E. Black
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-03-21
卷期号:383 (6689): 1344-1349
被引量:4
标识
DOI:10.1126/science.adj3566
摘要
Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI