From Logic-respecting Efficacy Estimands to Logic-ensuring Analysis Principle for Time-to-event Endpoint in Randomized Clinical Trials with Subgroups

推论 危险系数 人口 参数统计 临床试验 临床终点 医学 代理终结点 计量经济学 计算机科学 统计 数学 内科学 置信区间 人工智能 环境卫生
作者
Yi Liu,Miao Yang,Siyoen Kil,Jiang Li,Shoubhik Mondal,Yue Shentu,Hong Tian,Liwei Wang,Godwin Yung
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:: 1-26
标识
DOI:10.1080/19466315.2023.2186945
摘要

An important goal of precision medicine is to identify biomarkers that are predictive, and tailor the treatment according to the biomarker levels of individual patients. Differentiating prognostic vs. predictive biomarkers impacts important decision makings for patients and treating physicians. Using hazard ratio (HR) can mistake a purely prognostic biomarker for a predictive one leading to a disheartening possibility of depriving patients of beneficial treatment as demonstrated in the OAK trial. This stems from the illogical issue of HR at population level where marginal HR in the overall population can be larger than those in both subgroups. Instead of trying to circumvent this issue by discouraging comparisons between marginal and conditional HRs, we propose to directly fix it by using alternative logic-respecting efficacy estimands such as ratio of medians, ratio and difference of restricted mean survival times and milestone probabilities. These measures are straightforward, easy to interpret and clinically meaningful. More importantly, they will guarantee agreement between marginal and conditional efficacy and provide cohesive message around efficacy profile of the drug in the presence of subgroups.A step further is the application of Subgroup Mixable Estimation (SME) principle to ensure logical estimates when analyzing real clinical trial data. Detailed guidance is provided for the aforementioned logic-respecting estimands using either parametric, semi-parametric or non-parametric approaches. Simultaneous inference can be provided with proper multiplicity adjustment to facilitate joint decision making with user-friendly apps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd完成签到,获得积分10
1秒前
1秒前
nl完成签到 ,获得积分10
5秒前
orixero应助皮尔特桃仔采纳,获得10
5秒前
66发发布了新的文献求助10
5秒前
王大炮完成签到 ,获得积分10
7秒前
9秒前
HY完成签到,获得积分10
10秒前
漂亮送终完成签到,获得积分10
11秒前
科研通AI2S应助Vivian采纳,获得10
11秒前
11秒前
点击修改您的默认昵称完成签到,获得积分10
12秒前
脑洞疼应助66发采纳,获得10
12秒前
15秒前
仲乔妹完成签到,获得积分10
15秒前
15秒前
17秒前
李爱国应助贪玩绮南采纳,获得10
17秒前
18秒前
66发完成签到,获得积分10
19秒前
20秒前
子车茗应助lzy采纳,获得20
20秒前
yuzhang312完成签到 ,获得积分10
21秒前
23秒前
23秒前
开放不凡发布了新的文献求助30
23秒前
24秒前
雨蒙蒙完成签到,获得积分10
25秒前
无限的雨梅完成签到 ,获得积分10
28秒前
明理迎曼发布了新的文献求助10
28秒前
28秒前
007完成签到,获得积分10
30秒前
贪玩绮南发布了新的文献求助10
30秒前
31秒前
橘子完成签到,获得积分20
33秒前
虚幻赛凤发布了新的文献求助10
33秒前
star完成签到,获得积分10
33秒前
黄瓜蕉完成签到,获得积分10
35秒前
35秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086