Physics-Informed Neural Networks With Weighted Losses by Uncertainty Evaluation for Accurate and Stable Prediction of Manufacturing Systems

理论(学习稳定性) 钥匙(锁) 差异(会计) 人工神经网络 计算机科学 复杂系统 数据挖掘 机器学习 预测建模 人工智能 计算机安全 会计 业务
作者
Jiaqi Hua,Yingguang Li,Changqing Liu,Peng Wan,Xu Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11064-11076 被引量:33
标识
DOI:10.1109/tnnls.2023.3247163
摘要

The state prediction of key components in manufacturing systems tends to be risk-sensitive tasks, where prediction accuracy and stability are the two key indicators. The physics-informed neural networks (PINNs), which integrate the advantages of both data-driven models and physics models, are deemed as an effective approach and research trends for stable prediction; however, the potential advantages of PINN are limited for the situations with inaccurate physics models or noisy data, where the balancing of the weights of the data-driven model and physics model is very important for improving the performance of PINN, and it is also a challenge urgently to be addressed. This article proposed a kind of PINN with weighted losses (PNNN-WLs) by uncertainty evaluation for accurate and stable prediction of manufacturing systems, where a novel weight allocation strategy based on uncertainty evaluation by quantifying the variance of prediction errors is proposed, and an improved PINN framework is established for accurate and stable prediction. The proposed approach is verified with open datasets on tool wear prediction, and experimental results show that the prediction accuracy and stability could be obviously improved over existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁绿柏完成签到,获得积分20
刚刚
1秒前
Hilda007发布了新的文献求助10
1秒前
lzh完成签到 ,获得积分10
2秒前
1234567发布了新的文献求助10
2秒前
乐观保温杯完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
3秒前
3秒前
RR完成签到 ,获得积分10
4秒前
4秒前
4秒前
fff完成签到,获得积分20
4秒前
XIEQ发布了新的文献求助10
4秒前
Ava应助1816013153采纳,获得10
4秒前
研友_VZG7GZ应助ananan采纳,获得10
5秒前
zyz完成签到,获得积分10
5秒前
深情安青应助奋斗的猪采纳,获得10
5秒前
chenjiawen完成签到,获得积分20
6秒前
6秒前
烟花应助leewu采纳,获得10
6秒前
YuzheGao发布了新的文献求助10
7秒前
伊人不羁发布了新的文献求助10
7秒前
马雪建完成签到,获得积分20
8秒前
赵润泽完成签到 ,获得积分10
8秒前
Owen应助在啊采纳,获得10
8秒前
ENVY完成签到,获得积分10
9秒前
Leoon发布了新的文献求助10
9秒前
1234567完成签到,获得积分10
10秒前
爆米花应助wy采纳,获得10
11秒前
马雪建发布了新的文献求助10
12秒前
Ethan发布了新的文献求助10
12秒前
13秒前
13秒前
兜一兜发布了新的文献求助10
13秒前
喵喵发布了新的文献求助10
13秒前
优雅土豆完成签到,获得积分10
14秒前
落寞纲完成签到,获得积分10
14秒前
YuzheGao完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718