Physics-Informed Neural Networks With Weighted Losses by Uncertainty Evaluation for Accurate and Stable Prediction of Manufacturing Systems

理论(学习稳定性) 钥匙(锁) 差异(会计) 人工神经网络 计算机科学 复杂系统 数据挖掘 机器学习 预测建模 人工智能 计算机安全 会计 业务
作者
Jiaqi Hua,Yingguang Li,Changqing Liu,Peng Wan,Xu Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 11064-11076 被引量:13
标识
DOI:10.1109/tnnls.2023.3247163
摘要

The state prediction of key components in manufacturing systems tends to be risk-sensitive tasks, where prediction accuracy and stability are the two key indicators. The physics-informed neural networks (PINNs), which integrate the advantages of both data-driven models and physics models, are deemed as an effective approach and research trends for stable prediction; however, the potential advantages of PINN are limited for the situations with inaccurate physics models or noisy data, where the balancing of the weights of the data-driven model and physics model is very important for improving the performance of PINN, and it is also a challenge urgently to be addressed. This article proposed a kind of PINN with weighted losses (PNNN-WLs) by uncertainty evaluation for accurate and stable prediction of manufacturing systems, where a novel weight allocation strategy based on uncertainty evaluation by quantifying the variance of prediction errors is proposed, and an improved PINN framework is established for accurate and stable prediction. The proposed approach is verified with open datasets on tool wear prediction, and experimental results show that the prediction accuracy and stability could be obviously improved over existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
turbohero完成签到,获得积分10
1秒前
粗犷的灵松应助南宫采纳,获得10
1秒前
你好发布了新的文献求助10
1秒前
小羊完成签到,获得积分10
2秒前
zydd发布了新的文献求助10
2秒前
yu发布了新的文献求助10
3秒前
3秒前
Frankwei完成签到,获得积分10
4秒前
安生完成签到,获得积分20
4秒前
佳佳爱学习完成签到,获得积分10
4秒前
酷波er应助坦率续采纳,获得10
5秒前
5秒前
领导范儿应助生动的煎蛋采纳,获得10
6秒前
万能图书馆应助橘络采纳,获得10
6秒前
7秒前
天天快乐应助无情寒珊采纳,获得10
8秒前
Akim应助现代的曲奇采纳,获得10
8秒前
FashionBoy应助甜甜访曼采纳,获得10
8秒前
eAN完成签到,获得积分10
8秒前
8秒前
lingzhi完成签到 ,获得积分10
9秒前
Starry发布了新的文献求助10
9秒前
机智菀完成签到,获得积分10
9秒前
风色幻想完成签到,获得积分10
9秒前
10秒前
Lucas应助lyy采纳,获得10
10秒前
annis发布了新的文献求助10
10秒前
11秒前
欢喜冷之关注了科研通微信公众号
11秒前
11秒前
俭朴涫发布了新的文献求助10
11秒前
小鹏哥完成签到,获得积分10
12秒前
旺旺碎冰冰完成签到,获得积分10
13秒前
wanci应助似非采纳,获得10
13秒前
狗吃比巴卜完成签到 ,获得积分10
13秒前
13秒前
666完成签到,获得积分10
13秒前
wqqwd应助一木采纳,获得50
14秒前
提速狗完成签到,获得积分10
14秒前
852应助Afei采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305803
求助须知:如何正确求助?哪些是违规求助? 2939514
关于积分的说明 8493767
捐赠科研通 2613930
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663185
邀请新用户注册赠送积分活动 647987