An Adaptive Domain Adaptation Method for Rolling Bearings’ Fault Diagnosis Fusing Deep Convolution and Self-Attention Networks

人工智能 计算机科学 特征提取 模式识别(心理学) 深度学习 深信不疑网络 断层(地质) 卷积(计算机科学) 人工神经网络 地震学 地质学
作者
Xiao Yu,Youjie Wang,Zhongting Liang,Haidong Shao,Kun Yu,Wanli Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:46
标识
DOI:10.1109/tim.2023.3246494
摘要

Intelligent fault diagnosis methods based on deep learning have attracted significant attention in recent years. However, it still faces many challenges, including complex and variable working conditions, noise interference, and insufficient valid data samples. Therefore, a novel deep transfer learning bearing fault diagnosis model is designed in this work by fusing time-frequency analysis, residual network (ResNet) and self-attention mechanism (SAM). A multiscale time-frequency feature map (MTFFM) and global statistical feature matrix (GSFM) of vibration signals are first constructed using wavelet packet transform (WPT). A deep feature extraction network combining ResNet and SAM networks is then designed to realize the fused extraction of local and global time-frequency features. Finally, we construct a joint loss function by the combination of multi-kernel maximum mean discrepancy (MK-MMD) and the domain adversarial neural network (DANN) to optimize the depth feature extraction network, which improves the cross-domain invariance and fault state discrimination of depth features. The proposed optimization method fully exploits the advantages of high-dimensional spatial distribution difference evaluation and gradient inversion adversarial strategy. Its effectiveness is demonstrated through variable working condition transfer fault diagnosis tasks, showing superior performance compared with other intelligent fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的保温杯完成签到,获得积分10
1秒前
pzh发布了新的文献求助10
1秒前
cangye发布了新的文献求助10
1秒前
1秒前
somin应助鬼笔环肽采纳,获得10
1秒前
CipherSage应助康康星采纳,获得10
1秒前
2秒前
gygy2000完成签到,获得积分10
2秒前
2秒前
今后应助火锅采纳,获得10
3秒前
酷波er应助Yyy采纳,获得10
3秒前
3秒前
Jemmy发布了新的文献求助10
4秒前
5秒前
大个应助研友_LkBYo8采纳,获得10
5秒前
楼宸发布了新的文献求助10
5秒前
凪白发布了新的文献求助10
7秒前
7秒前
晓晓发布了新的文献求助10
8秒前
9秒前
李健应助1瞬间采纳,获得10
9秒前
10秒前
10秒前
10秒前
李健的小迷弟应助吉吉采纳,获得10
11秒前
11秒前
12秒前
李健的小迷弟应助楼宸采纳,获得10
12秒前
zgy1106完成签到,获得积分10
12秒前
酷波er应助感动城采纳,获得10
12秒前
921完成签到,获得积分10
13秒前
三木发布了新的文献求助10
13秒前
张泽奇完成签到,获得积分10
14秒前
Maestro_S发布了新的文献求助10
15秒前
lzyempire发布了新的文献求助10
15秒前
徐扬发布了新的文献求助10
15秒前
Yyy发布了新的文献求助10
16秒前
ChemGuo完成签到,获得积分10
17秒前
周洋发布了新的文献求助10
17秒前
罗婉婷发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788