Aerodynamic evaluation of cascade flow with actual geometric uncertainties using an adaptive sparse arbitrary polynomial chaos expansion

空气动力学 多项式混沌 级联 稳健性(进化) 多项式基 应用数学 算法 多项式的 基础(线性代数) 控制理论(社会学) 计算机科学 物理 数学 机械 统计 数学分析 几何学 工程类 人工智能 生物化学 化学 控制(管理) 化学工程 蒙特卡罗方法 基因
作者
Zhengtao Guo,Wuli Chu,Haoguang Zhang,Caiyun Liang,Dejun Meng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:13
标识
DOI:10.1063/5.0144937
摘要

In this paper, an adaptive sparse arbitrary polynomial chaos expansion (PCE) is first proposed to quantify the performance impact of realistic multi-dimensional manufacturing uncertainties. The Stieltjes algorithm is employed to generate the PCE basis functions concerning geometric variations with arbitrary distributions. The basis-adaptive Bayesian compressive sensing algorithm is introduced to retain a small number of significant PCE basis functions, requiring fewer model training samples while preserving fitting accuracy. Second, several benchmark tests are used to verify the computational efficiency and accuracy of the proposed method. Eventually, the coexistence effects of six typical machining deviations on the aerodynamic performance and flow fields of a controlled diffusion compressor cascade are investigated. The probability distributions of the machining deviations are approximated by limited measurement data using kernel density estimation. By uncertainty quantification, it can be learned that the mean performance seriously deteriorates with increasing incidences, while the performance at negative incidences is more dispersed. By global sensitivity analysis, the leading-edge profile error should be given high priority when working at negative incidences, and the inlet metal angle error would be carefully inspected first when the cascade works at high positive incidences. Furthermore, controlling the manufacturing accuracy of the suction surface profile error can play a certain role in improving the robustness of aerodynamic performance in off-design conditions. Through flow field analysis, it further proves that actual leading-edge errors are the most important ones to aerodynamics and reveals how the effects of leading-edge errors propagate in the cascade passage, thus affecting the aerodynamic loss.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wu8577应助lan采纳,获得10
1秒前
hhh发布了新的文献求助30
2秒前
2秒前
Zhai发布了新的文献求助10
3秒前
4秒前
Dr大壮发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
hulin_zjxu完成签到,获得积分10
8秒前
8秒前
王一山发布了新的文献求助20
8秒前
哭泣乌完成签到,获得积分10
10秒前
yhbk完成签到 ,获得积分10
11秒前
猪猪hero应助是述不是沭采纳,获得10
11秒前
zhaoxiao完成签到 ,获得积分10
11秒前
mary发布了新的文献求助10
12秒前
梓墨完成签到,获得积分10
12秒前
12秒前
14秒前
Orange应助Dr_zhangkai采纳,获得30
15秒前
zhaoxiao发布了新的文献求助10
16秒前
Jason完成签到,获得积分10
17秒前
深情安青应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得30
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
LaTeXer应助科研通管家采纳,获得50
18秒前
风清扬应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
SciGPT应助皮崇知采纳,获得10
20秒前
在逃跑的康熙大帝在大笑完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019