Machine learning accelerates the investigation of targeted MOFs: Performance prediction, rational design and intelligent synthesis

合理设计 纳米孔 化学空间 空格(标点符号) 班级(哲学) 计算机科学 人工智能 系统工程 机器学习 纳米技术 工程类 材料科学 生物信息学 生物 药物发现 操作系统
作者
Jing Lin,Zhimeng Liu,Yujie Guo,Shulin Wang,Tao Zhang,Xiangdong Xue,Rushuo Li,Shihao Feng,Linmeng Wang,Jiangtao Liu,Hongyi Gao,Ge Wang,Yanjing Su
出处
期刊:Nano Today [Elsevier]
卷期号:49: 101802-101802 被引量:27
标识
DOI:10.1016/j.nantod.2023.101802
摘要

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that are widely used in various emerging fields due to their large specific surface area, high porosity and tunable pore size. Its excellent chemical tunability provides a wide material space, in which tens of thousands of MOFs have been synthesized. However, it is impossible to explore such a vast chemical space through trial-and-error methods, making it difficult to achieve custom design of high-performance MOFs for specific applications. Machine learning (ML) is a powerful tool for guiding materials design and preparation by mining the hidden knowledge in data, and can even make prediction of material properties in seconds. This review aims to provide readers with a new perspective on how ML has been changing the research and development paradigm of MOFs. The four main data sources for MOFs and how to select the suitable features (descriptors) are firstly presented to enable the reader to quickly acquire data and carry out machine learning. Moreover, the application of ML in the development of MOFs is highlighted from the perspectives of performance prediction, rational design and intelligent synthesis. Finally, the future challenges and opportunities of combining ML with MOFs from the points of view of data and algorithms are proposed. This review will provide instructive guidance for ML-assisted MOFs research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪猪完成签到,获得积分10
1秒前
毛豆应助张雨露采纳,获得10
1秒前
NexusExplorer应助张雨露采纳,获得10
1秒前
3秒前
afterjourney完成签到,获得积分10
4秒前
orixero应助好耶采纳,获得10
4秒前
云中漫步完成签到,获得积分10
5秒前
小玉完成签到,获得积分20
5秒前
傲娇的冷亦完成签到,获得积分10
5秒前
霍嘉文发布了新的文献求助10
5秒前
搜集达人应助wasiwan采纳,获得10
5秒前
852应助周一斩采纳,获得10
6秒前
阿潇完成签到,获得积分10
6秒前
十二发布了新的文献求助20
6秒前
毛豆应助lyz666采纳,获得10
8秒前
华仔应助zzh0409km采纳,获得10
8秒前
8秒前
9秒前
烟花应助eternity136采纳,获得10
9秒前
内向平萱发布了新的文献求助10
9秒前
9秒前
Orange应助yoos采纳,获得10
10秒前
火星上白枫完成签到,获得积分10
10秒前
完美世界应助A怜采纳,获得10
10秒前
今后应助无限的寄真采纳,获得10
10秒前
FashionBoy应助动听的康乃馨采纳,获得10
11秒前
lalala应助佳佳努力发论文采纳,获得10
11秒前
斯文败类应助考研小白采纳,获得10
11秒前
净净子完成签到,获得积分10
13秒前
SciGPT应助ycy采纳,获得10
14秒前
落水无波应助细腻的山水采纳,获得10
14秒前
我爱电催化完成签到,获得积分10
14秒前
14秒前
沧笙踏歌完成签到,获得积分10
14秒前
涵de暴躁小地雷完成签到,获得积分10
15秒前
16秒前
2233223完成签到,获得积分10
16秒前
毛豆应助hhhhh采纳,获得10
16秒前
zhangfan发布了新的文献求助10
17秒前
H.完成签到 ,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234