作者
Meng Xie,Zhuoying Lin,Xiaoyu Ji,Xiangyuan Luo,Zerui Zhang,Mengyu Sun,Xiaoping Chen,Bixiang Zhang,Huifang Liang,Danfei Liu,Yangyang Feng,Yijun Wang,Yiwei Li,Bi‐Feng Liu,Wenjie Huang,Limin Xia
摘要
•ETV4 is upregulated and indicates poor prognosis in human HCC.•ETV4 increases TAM and MDSC infiltration and inhibits CD8+ T-cell accumulation, facilitating HCC metastasis.•FGF19/FGFR4 and HGF/c-MET upregulate ETV4 expression in HCC cells.•Anti-PD-L1 combined with BLU-554 or trametinib inhibit FGF19-ETV4 signalling-mediated HCC metastasis. Background & AimsMetastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis.MethodsPLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment.ResultsETV4 expression was positively related to higher tumour–node–metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19–ETV4–FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19–ETV4 signalling-induced HCC metastasis.ConclusionsETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis.Impact and implicationsHere, we reported that ETV4 increased PD-L1 and chemokine CCL2 expression in HCC cells, which resulted in TAM and MDSC accumulation and CD8+ T-cell inhibition to facilitate HCC metastasis. More importantly, we found that anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib markedly inhibited FGF19–ETV4 signalling-mediated HCC metastasis. This preclinical study will provide a theoretical basis for the development of new combination immunotherapy strategies for patients with HCC. Metastasis remains the major reason for the high mortality of patients with hepatocellular carcinoma (HCC). This study was designed to investigate the role of E-twenty-six-specific sequence variant 4 (ETV4) in promoting HCC metastasis and to explore a new combination therapy strategy for ETV4-mediated HCC metastasis. PLC/PRF/5, MHCC97H, Hepa1-6, and H22 cells were used to establish orthotopic HCC models. Clodronate liposomes were used to clear macrophages in C57BL/6 mice. Gr-1 monoclonal antibody was used to clear myeloid-derived suppressor cells (MDSCs) in C57BL/6 mice. Flow cytometry and immunofluorescence were used to detect the changes of key immune cells in the tumour microenvironment. ETV4 expression was positively related to higher tumour–node–metastasis (TNM) stage, poor tumour differentiation, microvascular invasion, and poor prognosis in human HCC. Overexpression of ETV4 in HCC cells transactivated PD-L1 and CCL2 expression, which increased tumour-associated macrophage (TAM) and MDSC infiltration and inhibited CD8+ T-cell accumulation. Knockdown of CCL2 by lentivirus or CCR2 inhibitor CCX872 treatment impaired ETV4-induced TAM and MDSC infiltration and HCC metastasis. Furthermore, FGF19/FGFR4 and HGF/c-MET jointly upregulated ETV4 expression through the ERK1/2 pathway. Additionally, ETV4 upregulated FGFR4 expression, and downregulation of FGFR4 decreased ETV4-enhanced HCC metastasis, which created a FGF19–ETV4–FGFR4 positive feedback loop. Finally, anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib prominently inhibited FGF19–ETV4 signalling-induced HCC metastasis. ETV4 is a prognostic biomarker, and anti-PD-L1 combined with FGFR4 inhibitor BLU-554 or MAPK inhibitor trametinib may be effective strategies to inhibit HCC metastasis.