Dynamic emergent leaf area in tidal wetlands: Implications for satellite-derived regional and global blue carbon estimates

互花米草 叶面积指数 环境科学 湿地 盐沼 涡度相关法 碳循环 生态系统 初级生产 天蓬 蓝炭 气候变化 大气科学 沼泽 水文学(农业) 生态学 海洋学 地质学 海草 生物 岩土工程
作者
Peter A. Hawman,Deepak R. Mishra,Jessica L. O’Connell
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113553-113553 被引量:5
标识
DOI:10.1016/j.rse.2023.113553
摘要

The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate highlights the importance of blue carbon in tidal wetlands in combating climate change. In this study, we highlight the uncertainty associated with leaf area index (LAI) estimations in tidal wetlands, specifically salt marshes, a key vegetation parameter for productivity models and Earth System Models (ESM). LAI, derived from satellite reflectance data, is linked to atmospheric carbon exchange and gross primary production (GPP) across vegetative ecosystems. However, estimating salt marsh LAI is challenging because canopy height and density vary across short distances, and tidal flooding alters the atmosphere-exposed leaf area, hereafter called emergent leaf area index (ELAI), at short time scales. Further, in tidal wetlands dominated by species such as Spartina alterniflora, canopy height and density vary across short distances. We present a novel approach for measuring spatiotemporal dynamics in tidal wetland ELAI. We modeled ELAI from vertical LAI profiles and created spatial estimates across tidal periods. We then linked ELAI with eddy covariance carbon (C) fluxes through footprint modeling and revealed correlations between emergent leaf area and C fluxes. Next, we demonstrated that ELAI can be readily estimated across 10-m spatial scales using Sentinel-2 satellite data, even during high tides (R2 = 0.89; NRMSE = 10%). Finally, we showed a common product, MODIS MYD15A2H, underestimated (20%) LAI during dry conditions but overestimated (7–93%) during high flooding. Dynamic ELAI could reduce uncertainties in satellite-derived global GPP products when developing blue carbon budgets for ecosystems threatened by accelerated sea level rise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond应助NANA采纳,获得10
1秒前
Sean完成签到 ,获得积分10
1秒前
1秒前
无情山水发布了新的文献求助10
2秒前
锦纹完成签到,获得积分10
2秒前
南桥发布了新的文献求助10
2秒前
2秒前
伶俐的书白完成签到,获得积分10
3秒前
科研通AI5应助威武诺言采纳,获得10
3秒前
3秒前
LXL完成签到,获得积分10
3秒前
杳鸢应助三金采纳,获得20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
英俊的铭应助yyj采纳,获得10
4秒前
SV发布了新的文献求助10
4秒前
5秒前
12发布了新的文献求助10
5秒前
JamesPei应助化学狗采纳,获得10
5秒前
胡图图发布了新的文献求助10
5秒前
6秒前
xm完成签到,获得积分10
7秒前
谦让的含海完成签到,获得积分10
7秒前
所所应助包容的剑采纳,获得10
7秒前
7秒前
8秒前
lynn_zhang发布了新的文献求助10
8秒前
9秒前
xh发布了新的文献求助10
9秒前
所所应助luoshi采纳,获得10
9秒前
飞龙在天完成签到 ,获得积分10
9秒前
深爱不疑完成签到,获得积分10
10秒前
知识四面八方来完成签到 ,获得积分10
10秒前
我就是我完成签到,获得积分10
10秒前
10秒前
10秒前
heart完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762