An edge-guided method to fruit segmentation in complex environments

锐化 分割 人工智能 计算机科学 GSM演进的增强数据速率 特征(语言学) 图像分割 块(置换群论) 计算机视觉 特征提取 模式识别(心理学) 推论 数学 哲学 语言学 几何学
作者
Xing Sheng,Chunmeng Kang,Jiye Zheng,Chen Lyu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107788-107788 被引量:9
标识
DOI:10.1016/j.compag.2023.107788
摘要

Accurate detection and segmentation of fruit is a key factor in the development of smart farming. Problems such as light variation, fruit overlap and leaf shading create a complex environment in orchards and have a significant impact on the development of smart farming. Many current deep learning-based segmentation methods do not make full use of edge information, resulting in inadequate sharpening of the fruit edges obtained from segmentation. To address this problem, an edge-guided based fruit segmentation method (EdgeSegNet) in complex environments is proposed by us. The method first performs feature extraction through the ResNet model as the backbone network, then integrates and refines the high-level semantic and spatial information through the Global Localization Module (GLM) and localizes potential targets in the target region with the help of the proposed Multi-Scale Localization Block (MSLB). Then Boundary Aware Module (BAM) sharpen the edges of potential targets by integrating the feature information of high and low layers, and finally get the accurate segmented image. The principle of the model is blurred positioning, precise sharpening, edge guiding. The experimental results showed that the method achieved an average MIoU of 0.909 and 0.942 on the apple and peach datasets of three different sizes, large, medium and small, respectively, outperforming several other state-of-the-art models in terms of accuracy and complexity as well as inference time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nann完成签到 ,获得积分10
刚刚
1秒前
烟花应助随想采纳,获得10
2秒前
liyuxuan完成签到,获得积分10
2秒前
十一点二十八分完成签到 ,获得积分10
2秒前
香蕉觅云应助hijuddy采纳,获得30
3秒前
无限白羊发布了新的文献求助10
3秒前
3秒前
4秒前
笨笨易绿发布了新的文献求助10
4秒前
4秒前
Navial30发布了新的文献求助10
4秒前
唐咩咩咩完成签到,获得积分10
5秒前
快乐疯样完成签到,获得积分10
6秒前
bru发布了新的文献求助10
6秒前
6秒前
6秒前
LJQ发布了新的文献求助10
7秒前
7秒前
叫滚滚发布了新的文献求助10
7秒前
LJ程励完成签到 ,获得积分10
7秒前
欢喜昊焱完成签到,获得积分10
8秒前
8秒前
Isla完成签到,获得积分10
9秒前
希望天下0贩的0应助钰L采纳,获得10
9秒前
9秒前
Lucas应助xx采纳,获得10
10秒前
rzy66发布了新的文献求助10
10秒前
小王发布了新的文献求助10
10秒前
慕青应助无限白羊采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
nieyaochi发布了新的文献求助10
12秒前
anders发布了新的文献求助10
12秒前
不工作没饭吃完成签到,获得积分10
12秒前
大方颦发布了新的文献求助10
13秒前
NexusExplorer应助过时的元风采纳,获得10
13秒前
13秒前
13秒前
Ava应助李子采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786