An edge-guided method to fruit segmentation in complex environments

锐化 分割 人工智能 计算机科学 GSM演进的增强数据速率 特征(语言学) 图像分割 块(置换群论) 计算机视觉 特征提取 模式识别(心理学) 推论 数学 哲学 语言学 几何学
作者
Xing Sheng,Chunmeng Kang,Jiye Zheng,Chen Lyu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107788-107788 被引量:9
标识
DOI:10.1016/j.compag.2023.107788
摘要

Accurate detection and segmentation of fruit is a key factor in the development of smart farming. Problems such as light variation, fruit overlap and leaf shading create a complex environment in orchards and have a significant impact on the development of smart farming. Many current deep learning-based segmentation methods do not make full use of edge information, resulting in inadequate sharpening of the fruit edges obtained from segmentation. To address this problem, an edge-guided based fruit segmentation method (EdgeSegNet) in complex environments is proposed by us. The method first performs feature extraction through the ResNet model as the backbone network, then integrates and refines the high-level semantic and spatial information through the Global Localization Module (GLM) and localizes potential targets in the target region with the help of the proposed Multi-Scale Localization Block (MSLB). Then Boundary Aware Module (BAM) sharpen the edges of potential targets by integrating the feature information of high and low layers, and finally get the accurate segmented image. The principle of the model is blurred positioning, precise sharpening, edge guiding. The experimental results showed that the method achieved an average MIoU of 0.909 and 0.942 on the apple and peach datasets of three different sizes, large, medium and small, respectively, outperforming several other state-of-the-art models in terms of accuracy and complexity as well as inference time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖落完成签到,获得积分10
1秒前
sanmumu发布了新的文献求助10
1秒前
滴滴哒发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
代沁完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
威武好吐司完成签到 ,获得积分10
5秒前
充电宝应助谢书南采纳,获得10
5秒前
5秒前
爆米花应助zzzz采纳,获得10
6秒前
烟花应助三三采纳,获得10
6秒前
田様应助双子土豆泥采纳,获得10
7秒前
yuhejiang发布了新的文献求助10
8秒前
8秒前
共享精神应助张雯雯采纳,获得10
8秒前
慕青应助北风语采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助snow采纳,获得10
10秒前
IIII发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
寒月完成签到,获得积分10
11秒前
Eroberer完成签到,获得积分10
12秒前
一汪完成签到,获得积分10
12秒前
CodeCraft应助小脚丫采纳,获得10
12秒前
12秒前
球球发布了新的文献求助10
12秒前
13秒前
对苏发布了新的文献求助10
14秒前
14秒前
14秒前
小夭发布了新的文献求助10
15秒前
星辰大海应助yy111采纳,获得10
15秒前
16秒前
敏感的滑板完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171