An edge-guided method to fruit segmentation in complex environments

锐化 分割 人工智能 计算机科学 GSM演进的增强数据速率 特征(语言学) 图像分割 块(置换群论) 计算机视觉 特征提取 模式识别(心理学) 推论 数学 几何学 语言学 哲学
作者
Xing Sheng,Chunmeng Kang,Jiye Zheng,Chen Lyu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:208: 107788-107788 被引量:9
标识
DOI:10.1016/j.compag.2023.107788
摘要

Accurate detection and segmentation of fruit is a key factor in the development of smart farming. Problems such as light variation, fruit overlap and leaf shading create a complex environment in orchards and have a significant impact on the development of smart farming. Many current deep learning-based segmentation methods do not make full use of edge information, resulting in inadequate sharpening of the fruit edges obtained from segmentation. To address this problem, an edge-guided based fruit segmentation method (EdgeSegNet) in complex environments is proposed by us. The method first performs feature extraction through the ResNet model as the backbone network, then integrates and refines the high-level semantic and spatial information through the Global Localization Module (GLM) and localizes potential targets in the target region with the help of the proposed Multi-Scale Localization Block (MSLB). Then Boundary Aware Module (BAM) sharpen the edges of potential targets by integrating the feature information of high and low layers, and finally get the accurate segmented image. The principle of the model is blurred positioning, precise sharpening, edge guiding. The experimental results showed that the method achieved an average MIoU of 0.909 and 0.942 on the apple and peach datasets of three different sizes, large, medium and small, respectively, outperforming several other state-of-the-art models in terms of accuracy and complexity as well as inference time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feeuoo发布了新的文献求助10
刚刚
zombie完成签到,获得积分10
1秒前
zh完成签到 ,获得积分10
1秒前
ycc完成签到,获得积分10
3秒前
adam完成签到,获得积分20
3秒前
5秒前
活力的秋荷完成签到,获得积分10
5秒前
科研通AI2S应助fengzi151采纳,获得10
5秒前
yx_cheng应助猪头采纳,获得50
6秒前
lisier完成签到,获得积分10
7秒前
Doctor-Bu发布了新的文献求助10
7秒前
FoxLY完成签到,获得积分10
8秒前
adam发布了新的文献求助10
9秒前
9秒前
可爱的函函应助咯咚采纳,获得10
10秒前
kmy完成签到 ,获得积分10
10秒前
11秒前
小马甲应助阿波罗采纳,获得10
12秒前
小肥完成签到 ,获得积分10
13秒前
14秒前
西北孤傲的狼完成签到,获得积分10
15秒前
nhx完成签到,获得积分10
16秒前
feeuoo完成签到,获得积分10
16秒前
燕子发布了新的文献求助10
17秒前
顾矜应助火星上的白开水采纳,获得30
17秒前
哈哈哈发布了新的文献求助10
17秒前
怕黑衣发布了新的文献求助10
18秒前
俞水云完成签到,获得积分10
18秒前
海棠听风完成签到 ,获得积分10
19秒前
19秒前
西伯侯完成签到,获得积分10
20秒前
blue完成签到,获得积分10
20秒前
Doctor-Bu完成签到,获得积分20
22秒前
zzzzzz发布了新的文献求助10
24秒前
JIANGCHUNYAN发布了新的文献求助10
24秒前
25秒前
苹果小蕾发布了新的文献求助10
25秒前
大个应助哈哈哈采纳,获得10
27秒前
研友_Y59785应助Allen采纳,获得10
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975