亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attentional Graph Convolutional Network for Structure-Aware Audiovisual Scene Classification

计算机科学 光谱图 突出 图形 人工智能 卷积神经网络 视听 特征提取 模式识别(心理学) 计算机视觉 可视化 特征(语言学) 语音识别 理论计算机科学 多媒体 语言学 哲学
作者
Liguang Zhou,Yuhongze Zhou,Xiaonan Qi,Junjie Hu,Tin Lun Lam,Yangsheng Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:9
标识
DOI:10.1109/tim.2023.3260282
摘要

Audio-Visual scene understanding is a challenging problem due to the unstructured spatial-temporal relations that exist in the audio signals and spatial layouts of different objects in the visual images. Recently, many studies have focused on abstracting features from convolutional neural networks while the learning of explicit semantically relevant frames of sound signals and visual images has been overlooked. To this end, we present an end-to-end framework, namely attentional graph convolutional network (AGCN), for structure-aware audio-visual scene representation. First, the spectrogram of sound and input image is processed by a backbone network for feature extraction. Then, to build multi-scale hierarchical information of input signals, we utilize an attention fusion mechanism to aggregate features from multiple layers of the backbone network. Notably, to well represent the salient regions and contextual information, the salient acoustic graph (SAG) and contextual acoustic graph (CAG), salient visual graph (SVG), and contextual visual graph (CVG) are constructed for the audio-visual scene representation. Finally, the constructed graphs pass through a graph convolutional network for structure-aware audio-visual scene recognition. Extensive experimental results on the audio, visual and audio-visual scene recognition datasets show that promising results have been achieved by the AGCN methods. We have achieved 90.6 precision on the ADVANCE dataset, showing a 20.5% improvement over previous method. Visualizing graphs on the spectrograms and images have been presented to show the effectiveness of proposed CAG/SAG and CVG/SVG that could focus on the salient and semantic relevant regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon应助科研通管家采纳,获得10
40秒前
aowulan完成签到 ,获得积分10
51秒前
科研通AI5应助king采纳,获得10
1分钟前
我是老大应助科研小白包采纳,获得10
1分钟前
77完成签到 ,获得积分10
1分钟前
FashionBoy应助文艺猫咪采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
外向邑发布了新的文献求助10
2分钟前
3分钟前
3分钟前
lanxinge完成签到 ,获得积分10
3分钟前
zjz发布了新的文献求助20
3分钟前
文艺猫咪发布了新的文献求助10
3分钟前
领导范儿应助zjz采纳,获得10
3分钟前
3分钟前
3分钟前
king发布了新的文献求助10
4分钟前
zjz发布了新的文献求助10
4分钟前
忧虑的安青完成签到,获得积分10
4分钟前
赘婿应助忧虑的安青采纳,获得20
4分钟前
4分钟前
4分钟前
zjz完成签到,获得积分10
4分钟前
樊伟诚发布了新的文献求助10
4分钟前
林爱桃123发布了新的文献求助10
4分钟前
TXZ06完成签到,获得积分10
4分钟前
眼里的萧萧雨完成签到,获得积分20
4分钟前
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
深情安青应助贪玩宛秋采纳,获得10
5分钟前
5分钟前
薄薄荷完成签到,获得积分10
5分钟前
毓雅给毓雅的求助进行了留言
5分钟前
林爱桃123完成签到,获得积分20
5分钟前
7分钟前
Herry发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544431
求助须知:如何正确求助?哪些是违规求助? 3121630
关于积分的说明 9348113
捐赠科研通 2819899
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273