Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent

纳米笼 位阻效应 合理设计 二面角 结晶学 化学 材料科学 纳米技术 立体化学 分子 氢键 生物化学 有机化学 催化作用
作者
Kai Wu,Tanya K. Ronson,Pingru Su,Zhi Chen,Leonard Goh,Andrew W. Heard,Xiaopeng Li,Fabian Klautzsch,Christoph A. Schalley,M. Vinković,Jonathan R. Nitschke
出处
期刊:Nature Synthesis [Springer Nature]
卷期号:2 (8): 789-797 被引量:18
标识
DOI:10.1038/s44160-023-00276-9
摘要

Biological encapsulants, such as viral capsids and ferritin protein cages, use many identical subunits to tile the surface of a polyhedron. Inspired by these natural systems, synthetic chemists have prepared artificial nanocages with well-defined shapes and cavities. Rational control over the self-assembly of discrete, nanometre-scale, hollow coordination cages composed of simple components remains challenging as a result of the entropic costs associated with binding many subunits together, difficulties in the error-correction processes associated with assembly and increasing surface energy as their size grows. Here we demonstrate the construction of nanocages of increasing size derived from a single pentatopic pyrrole-based subcomponent. Reasoned shifts in the preferred coordination number of the metal ions used, along with the denticity and steric hindrance of the ligands, enabled the generation of progressively larger cages. These structural changes of the cages are reminiscent of the differences in the folding of proteins caused by minor variations in their amino acid sequences; understanding how they affect capsule structure and thus cavity size may help to elucidate the construction principles for larger and functional capsules, capable of binding and carrying large biomolecules as cargoes. Controlling the self-assembly of large coordination cages is challenging owing to entropic costs and difficulties in error correction. Now an array of large cages prepared by the rational design of alterations that allow for the tuning of the dihedral angle between pentagonal subunits is reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹斟酒应助王毅采纳,获得10
2秒前
zjl094完成签到,获得积分10
3秒前
dapao完成签到,获得积分10
3秒前
赘婿应助Singularity采纳,获得10
6秒前
6秒前
彳亍1117应助阿飞采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
希望天下0贩的0应助duang采纳,获得10
8秒前
8秒前
8秒前
JQKing完成签到,获得积分10
9秒前
sniffgo发布了新的文献求助10
11秒前
ynscw发布了新的文献求助10
11秒前
哈人的猫发布了新的文献求助10
11秒前
华仔应助sush1hang采纳,获得10
12秒前
南安完成签到 ,获得积分10
13秒前
tlight1740发布了新的文献求助200
13秒前
13秒前
aria发布了新的文献求助10
13秒前
了了发布了新的文献求助10
13秒前
14秒前
马克关注了科研通微信公众号
15秒前
16秒前
小二郎应助AtGaP采纳,获得10
17秒前
豆浆油条完成签到,获得积分10
17秒前
astalavista完成签到,获得积分10
17秒前
18秒前
可靠的马丁完成签到,获得积分10
21秒前
Brian完成签到,获得积分10
23秒前
姜姜完成签到,获得积分10
23秒前
星亚唐发布了新的文献求助10
24秒前
了了完成签到,获得积分10
24秒前
zjh完成签到,获得积分10
26秒前
28秒前
乐乐发布了新的文献求助30
29秒前
iNk应助科研通管家采纳,获得20
29秒前
思源应助科研通管家采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376