Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent

纳米笼 位阻效应 合理设计 二面角 结晶学 化学 材料科学 纳米技术 立体化学 分子 氢键 生物化学 有机化学 催化作用
作者
Kai Wu,Tanya K. Ronson,Pingru Su,Zhi Chen,Leonard Goh,Andrew W. Heard,Xiaopeng Li,Fabian Klautzsch,Christoph A. Schalley,M. Vinković,Jonathan R. Nitschke
出处
期刊:Nature Synthesis [Springer Nature]
卷期号:2 (8): 789-797 被引量:52
标识
DOI:10.1038/s44160-023-00276-9
摘要

Biological encapsulants, such as viral capsids and ferritin protein cages, use many identical subunits to tile the surface of a polyhedron. Inspired by these natural systems, synthetic chemists have prepared artificial nanocages with well-defined shapes and cavities. Rational control over the self-assembly of discrete, nanometre-scale, hollow coordination cages composed of simple components remains challenging as a result of the entropic costs associated with binding many subunits together, difficulties in the error-correction processes associated with assembly and increasing surface energy as their size grows. Here we demonstrate the construction of nanocages of increasing size derived from a single pentatopic pyrrole-based subcomponent. Reasoned shifts in the preferred coordination number of the metal ions used, along with the denticity and steric hindrance of the ligands, enabled the generation of progressively larger cages. These structural changes of the cages are reminiscent of the differences in the folding of proteins caused by minor variations in their amino acid sequences; understanding how they affect capsule structure and thus cavity size may help to elucidate the construction principles for larger and functional capsules, capable of binding and carrying large biomolecules as cargoes. Controlling the self-assembly of large coordination cages is challenging owing to entropic costs and difficulties in error correction. Now an array of large cages prepared by the rational design of alterations that allow for the tuning of the dihedral angle between pentagonal subunits is reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来一斤小鲜肉完成签到,获得积分10
刚刚
刚刚
prove应助大胆的向松采纳,获得10
1秒前
Andy_Cheung应助XWY采纳,获得10
1秒前
mn略略略发布了新的文献求助10
1秒前
1234567发布了新的文献求助10
2秒前
李健应助哭泣绝音采纳,获得10
2秒前
HY完成签到,获得积分10
2秒前
3秒前
四个空格发布了新的文献求助10
3秒前
3秒前
万能图书馆应助沉默的驳采纳,获得10
3秒前
胡英俊完成签到,获得积分10
3秒前
4秒前
sota发布了新的文献求助10
4秒前
4秒前
红墨完成签到,获得积分10
4秒前
科研干冲冲冲完成签到,获得积分20
5秒前
今后应助精神的精神病采纳,获得10
5秒前
小南完成签到,获得积分10
5秒前
小五发布了新的文献求助20
6秒前
gyh完成签到,获得积分10
6秒前
无极微光应助125676采纳,获得20
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
时荒发布了新的文献求助10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
小乔应助科研通管家采纳,获得10
8秒前
小乔应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902