Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent

纳米笼 位阻效应 合理设计 二面角 结晶学 化学 材料科学 纳米技术 立体化学 分子 氢键 生物化学 有机化学 催化作用
作者
Kai Wu,Tanya K. Ronson,Pingru Su,Zhi Chen,Leonard Goh,Andrew W. Heard,Xiaopeng Li,Fabian Klautzsch,Christoph A. Schalley,M. Vinković,Jonathan R. Nitschke
出处
期刊:Nature Synthesis [Springer Nature]
卷期号:2 (8): 789-797 被引量:52
标识
DOI:10.1038/s44160-023-00276-9
摘要

Biological encapsulants, such as viral capsids and ferritin protein cages, use many identical subunits to tile the surface of a polyhedron. Inspired by these natural systems, synthetic chemists have prepared artificial nanocages with well-defined shapes and cavities. Rational control over the self-assembly of discrete, nanometre-scale, hollow coordination cages composed of simple components remains challenging as a result of the entropic costs associated with binding many subunits together, difficulties in the error-correction processes associated with assembly and increasing surface energy as their size grows. Here we demonstrate the construction of nanocages of increasing size derived from a single pentatopic pyrrole-based subcomponent. Reasoned shifts in the preferred coordination number of the metal ions used, along with the denticity and steric hindrance of the ligands, enabled the generation of progressively larger cages. These structural changes of the cages are reminiscent of the differences in the folding of proteins caused by minor variations in their amino acid sequences; understanding how they affect capsule structure and thus cavity size may help to elucidate the construction principles for larger and functional capsules, capable of binding and carrying large biomolecules as cargoes. Controlling the self-assembly of large coordination cages is challenging owing to entropic costs and difficulties in error correction. Now an array of large cages prepared by the rational design of alterations that allow for the tuning of the dihedral angle between pentagonal subunits is reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助苏大肺雾采纳,获得10
2秒前
HE完成签到,获得积分10
2秒前
null应助你好采纳,获得10
2秒前
追寻映寒完成签到,获得积分10
2秒前
蓝天发布了新的文献求助10
2秒前
2秒前
LiZheng发布了新的文献求助30
2秒前
wanci应助纯真丁一郎采纳,获得10
3秒前
领导范儿应助纯真丁一郎采纳,获得10
3秒前
能干梦芝完成签到,获得积分10
3秒前
无鸣钟发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
3秒前
Tong完成签到,获得积分10
4秒前
云望完成签到,获得积分10
4秒前
4秒前
5秒前
Apple完成签到,获得积分10
5秒前
脑洞疼应助皮皮虾采纳,获得10
5秒前
6666发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
JamesPei应助宇少爱学习哟采纳,获得10
8秒前
huahua发布了新的文献求助10
8秒前
迦佭发布了新的文献求助10
8秒前
西瓜完成签到,获得积分10
9秒前
科研狗完成签到,获得积分10
10秒前
10秒前
汤一德完成签到,获得积分10
10秒前
10秒前
慕青应助christine采纳,获得10
10秒前
有魅力遥完成签到,获得积分10
10秒前
10秒前
11秒前
迅速的电源完成签到,获得积分10
11秒前
张朝欣完成签到,获得积分10
11秒前
小岛完成签到,获得积分10
11秒前
1111完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759108
求助须知:如何正确求助?哪些是违规求助? 5518880
关于积分的说明 15393113
捐赠科研通 4896215
什么是DOI,文献DOI怎么找? 2633621
邀请新用户注册赠送积分活动 1581612
关于科研通互助平台的介绍 1537213