Molecular insights into enhanced water evaporation from a hybrid nanostructured surface with hydrophilic and hydrophobic domains

纳米柱 蒸发 材料科学 分子动力学 化学物理 化学工程 分子 表面能 纳米技术 纳米结构 化学 热力学 复合材料 有机化学 计算化学 物理 工程类
作者
Zequn Wang,Meng An,Dongsheng Chen,Yuejin Yuan,Xingtao Xu,Swellam W. Sharshir,Brian Yuliarto,Fengbo Zhu,Xuhui Sun,Shan Gao,Yusuke Yamauchi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:465: 142838-142838 被引量:14
标识
DOI:10.1016/j.cej.2023.142838
摘要

Solar-driven interfacial evaporation has attracted considerable attention owing to its outstanding efficiency in thermal energy utilization and desalination. Nanostructured surface designs of interfacial evaporation materials can favor the water evaporation through water-mediated interactions. However, molecular-level understanding of water evaporation on hybrid nanostructured surfaces with hydrophilic and hydrophobic domains remains to be explored comprehensively. Herein, we performed molecular dynamics simulations of water evaporation from hybrid nanostructured surfaces composed of a hydrophilic substrate covered with hydrophobic nanopillars. The simulation results suggest that the hydrophobic nanopillars on the hydrophilic surface can effectively increase the water evaporation rate, and the rate can be increased by ∼ 28.3% at the surface converages 30% of hydrophobic nanopillars, as compared to that obtained with a flat hydrophilic surface. The energy barrier of water evaporation, density distribution of interfacial hydrogen bonds, and the arrangement of water molecules in confined nanochannels between the hydrophobic nanopillars were analyzed. The results of the velocity vector distribution of water molecules and their dipole orientations suggest that the orderly arrangement of water molecules not only mediates the potential barrier of water molecules but also improves heat conduction in confined water as well as interfacial heat conduction between interfacial water molecules and hybrid surfaces. Moreover, the relationship between the evaporation rate and the features of the hybrid surface, including surface coverage with hydrophobic nanopillars, liquid film thickness, and the hydrophilicity and hydrophobicity of the substrate and nanopillars, respectively were evaluated based on the Pearson correlation coefficient. This work provides key insights into the molecular-level mechanism of the interfacial evaporation of water and furnishes a facile and general strategy for designing surface structures for highly efficient water evaporation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王w发布了新的文献求助10
1秒前
yyyyy完成签到,获得积分10
2秒前
2秒前
大侠发布了新的文献求助10
2秒前
魁梧的乐天完成签到,获得积分20
2秒前
冯度翩翩完成签到,获得积分10
3秒前
科研通AI2S应助satchzhao采纳,获得10
3秒前
jijizz完成签到,获得积分10
4秒前
一一发布了新的文献求助10
4秒前
小马甲应助ChiDaiOLD采纳,获得10
4秒前
4秒前
鳗鱼灵寒发布了新的文献求助10
5秒前
shatang发布了新的文献求助10
5秒前
lesyeuxdexx完成签到 ,获得积分10
7秒前
8秒前
程琳完成签到,获得积分20
9秒前
10秒前
卓哥发布了新的文献求助10
10秒前
科研通AI5应助sansan采纳,获得10
11秒前
11秒前
11秒前
脑洞疼应助杰森斯坦虎采纳,获得10
11秒前
13秒前
14秒前
研友_QQC完成签到,获得积分10
14秒前
NeuroWhite完成签到,获得积分10
14秒前
14秒前
搜索v完成签到,获得积分10
15秒前
liuchuck完成签到 ,获得积分10
15秒前
15秒前
15秒前
猫独秀完成签到,获得积分10
15秒前
17秒前
buno应助yuefeng采纳,获得10
17秒前
yiming完成签到,获得积分10
17秒前
落落发布了新的文献求助10
18秒前
清秋若月完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808