Temporal remote sensing based soil salinity mapping in Indo-Gangetic plain employing machine-learning techniques

土壤盐分 归一化差异植被指数 干旱 植被(病理学) 环境科学 盐度 旱地盐分 水文学(农业) 自然地理学 土壤水分 气候变化 地理 土壤科学 地质学 土壤肥力 土壤生物多样性 医学 古生物学 海洋学 岩土工程 病理
作者
Justin George Kalambukattu,Binu Johns,Suresh Kumar,Anu David Raj,Rajath Ellur
出处
期刊:Proceedings of the Indian National Science Academy. Part A, Physical Sciences [Indian National Science Academy]
卷期号:89 (2): 290-305 被引量:3
标识
DOI:10.1007/s43538-023-00157-x
摘要

Soil salinization is one of the most active land degradation processes, affecting predominantly arid, semi-arid, and dry sub-humid regions and leading to decreased agricultural yields. The Indo-Gangetic plain, which includes the irrigated command areas with arid and semi-arid climatic conditions are severely affected by secondary soil salinization. Assessing the spatial and temporal extent as well as the severity of salinization is an important step for adoption of proper reclamation measures to boost agricultural productivity in the salt affected areas. The study was conducted with this background to evaluate the extent and severity of soil salinization in alluvial plains of Mathura district of Uttar Pradesh, India. In this study, the satellite data of 6 months from January 2019 to June 2019 were pre-processed and various spectral indices were generated in Google Earth Engine. Remote sensing techniques provides an ideal platform for addressing this problem at larger scales and thus we employed Sentinel-2 derived vegetation and salinity spectral indices for distinguishing temporal change in severity of soil salinization and map the salinity as a function of these indices for the entire study area. The time series salinity analysis showed that among the various spectral indices Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Soil Index (NDSI) had a clear differentiation between slight, moderate and severe salinity class in the first three months of the study period and the Salinity Index II (SI_II) could differentiate for the first four months. Further, two machine learning algorithms namely Random Forest (RF) and Support Vector Machine (SVM), were used to create soil salinity prediction models making use of the soil Electrical Conductivity (EC) values of 115 ground-sampling sites as the predictand variable and the optimal spectral indices as the predictor variables. Further, we evaluated the prediction ability of different models using 12 and 24 variables combination using R2 and RMSE values. The prediction accuracy of the RF model was found to be slightly higher than that of the SVM model, and the spatial distribution pattern of soil salinity predicted by the two models were comparable. We concluded that spectral indices combined with machine learning techniques have the potential for low cost reliable spatial and temporal soil salinity distribution mapping for planning and implementation of salinity reclamation measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmq发布了新的文献求助30
刚刚
刚刚
1秒前
卡卡发布了新的文献求助10
1秒前
2秒前
RCrisp完成签到,获得积分20
2秒前
刘洪均完成签到,获得积分10
2秒前
3秒前
梦幻发布了新的文献求助10
4秒前
Landau完成签到,获得积分10
5秒前
妮妮完成签到,获得积分10
5秒前
充电宝应助不胜玖采纳,获得50
6秒前
妮妮爱smile完成签到,获得积分10
6秒前
7秒前
7秒前
永远55度发布了新的文献求助10
8秒前
今后应助快乐的水绿采纳,获得10
9秒前
9秒前
10秒前
Akim应助拓跋听南采纳,获得20
10秒前
11秒前
Hover完成签到,获得积分0
11秒前
呆萌松鼠完成签到,获得积分10
11秒前
秋刀鱼完成签到,获得积分10
12秒前
苻尔曼完成签到,获得积分20
12秒前
gao完成签到,获得积分10
13秒前
禹平露完成签到,获得积分10
14秒前
ai化学发布了新的文献求助10
14秒前
徐嘎嘎发布了新的文献求助10
15秒前
15秒前
15秒前
呜呜发布了新的文献求助10
16秒前
16秒前
ZJX发布了新的文献求助10
17秒前
Tristan完成签到 ,获得积分10
17秒前
18秒前
yeye完成签到,获得积分10
19秒前
zyy发布了新的文献求助30
21秒前
西哥发布了新的文献求助10
21秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814