亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic multi-objective evolutionary algorithm based on knowledge transfer

计算机科学 进化算法 趋同(经济学) 人口 数学优化 重新使用 集合(抽象数据类型) 过程(计算) 遗传算法 非线性降维 算法 学习迁移 质量(理念) 点(几何) 人工智能 机器学习 数学 生态学 哲学 几何学 人口学 认识论 社会学 降维 经济 生物 程序设计语言 经济增长 操作系统
作者
Linjie Wu,Di Wu,Tianhao Zhao,Xingjuan Cai,Liping Xie
出处
期刊:Information Sciences [Elsevier]
卷期号:636: 118886-118886 被引量:24
标识
DOI:10.1016/j.ins.2023.03.111
摘要

Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if all individuals are transferred, they may experience negative transfers. Therefore, this paper proposes a novel knowledge transfer method for the dynamic multi-objective evolutionary algorithm (T-DMOEA) to solve DMOPs, which consists of a multi-time prediction model (MTPM) and a manifold TL algorithm. First, according to the movement trend of historical knee points, the MTPM model uses a weighted method to effectively track knee points after environmental changes. Then, the knowledge of the suboptimal solution is reused in the non-knee point set using the manifold TL technique, which yields more high-quality individuals and speeds up the convergence. In the dynamic evolutionary process, the knee points and high-quality solutions are combined to guide the generation of the initial population in the next environment, ensuring the diversity of the population while reducing the computational cost. The experimental results show that the proposed T-DMOEA algorithm can converge rapidly in solving DMOPs while obtaining better-quality solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和气生财君完成签到 ,获得积分10
9秒前
sunny完成签到 ,获得积分10
13秒前
orixero应助高源伯采纳,获得10
35秒前
36秒前
41秒前
合适寄松发布了新的文献求助20
41秒前
大yo知闲闲完成签到 ,获得积分10
42秒前
高源伯发布了新的文献求助10
47秒前
财路通八方完成签到 ,获得积分10
47秒前
昔黎完成签到 ,获得积分10
49秒前
maprang完成签到,获得积分10
51秒前
54秒前
shaylie完成签到 ,获得积分10
59秒前
zzz发布了新的文献求助10
59秒前
Orange应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得30
1分钟前
LLL完成签到 ,获得积分10
1分钟前
1分钟前
Sunny完成签到 ,获得积分10
1分钟前
碗在水中央完成签到 ,获得积分10
1分钟前
安详的惜梦完成签到,获得积分20
1分钟前
Akim应助开心雅寒采纳,获得10
1分钟前
清脆沛山发布了新的文献求助30
1分钟前
1分钟前
开心雅寒发布了新的文献求助10
1分钟前
national完成签到,获得积分10
1分钟前
三岁完成签到 ,获得积分10
1分钟前
开心雅寒完成签到,获得积分10
1分钟前
Blue完成签到 ,获得积分10
2分钟前
2分钟前
national发布了新的文献求助10
2分钟前
王丹靖完成签到 ,获得积分10
2分钟前
我爱读文献完成签到,获得积分10
2分钟前
迷路擎宇发布了新的文献求助10
2分钟前
磊少完成签到,获得积分10
2分钟前
迷路擎宇完成签到,获得积分20
2分钟前
NexusExplorer应助尊敬的臻采纳,获得10
2分钟前
2分钟前
YUEER发布了新的文献求助10
2分钟前
三年三班三井寿完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880437
求助须知:如何正确求助?哪些是违规求助? 6572351
关于积分的说明 15689876
捐赠科研通 5000124
什么是DOI,文献DOI怎么找? 2694209
邀请新用户注册赠送积分活动 1636018
关于科研通互助平台的介绍 1593447