亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic multi-objective evolutionary algorithm based on knowledge transfer

计算机科学 进化算法 趋同(经济学) 人口 数学优化 重新使用 集合(抽象数据类型) 过程(计算) 遗传算法 非线性降维 算法 学习迁移 质量(理念) 点(几何) 人工智能 机器学习 数学 生态学 哲学 几何学 人口学 认识论 社会学 降维 经济 生物 程序设计语言 经济增长 操作系统
作者
Linjie Wu,Di Wu,Tianhao Zhao,Xingjuan Cai,Liping Xie
出处
期刊:Information Sciences [Elsevier]
卷期号:636: 118886-118886 被引量:24
标识
DOI:10.1016/j.ins.2023.03.111
摘要

Dynamic multi-objective optimization problems (DMOPs) are mainly reflected in objective changes with changes in the environment. To solve DMOPs, a transfer learning (TL) approach is used, which can continuously adapt to environmental changes and reuse valuable knowledge from the past. However, if all individuals are transferred, they may experience negative transfers. Therefore, this paper proposes a novel knowledge transfer method for the dynamic multi-objective evolutionary algorithm (T-DMOEA) to solve DMOPs, which consists of a multi-time prediction model (MTPM) and a manifold TL algorithm. First, according to the movement trend of historical knee points, the MTPM model uses a weighted method to effectively track knee points after environmental changes. Then, the knowledge of the suboptimal solution is reused in the non-knee point set using the manifold TL technique, which yields more high-quality individuals and speeds up the convergence. In the dynamic evolutionary process, the knee points and high-quality solutions are combined to guide the generation of the initial population in the next environment, ensuring the diversity of the population while reducing the computational cost. The experimental results show that the proposed T-DMOEA algorithm can converge rapidly in solving DMOPs while obtaining better-quality solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
16秒前
41秒前
42秒前
43秒前
44秒前
45秒前
45秒前
46秒前
46秒前
46秒前
46秒前
47秒前
48秒前
48秒前
48秒前
lawang发布了新的文献求助10
48秒前
lawang发布了新的文献求助10
48秒前
lawang发布了新的文献求助10
48秒前
lawang发布了新的文献求助10
51秒前
lawang发布了新的文献求助10
51秒前
lawang发布了新的文献求助10
51秒前
lawang发布了新的文献求助10
51秒前
lawang发布了新的文献求助10
51秒前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
Endymion发布了新的文献求助10
1分钟前
1分钟前
Endymion完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分0
2分钟前
矜持完成签到 ,获得积分10
2分钟前
lalala完成签到,获得积分10
3分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
平常以云完成签到 ,获得积分10
3分钟前
3分钟前
斯文败类应助lawang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957