Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 发展心理学 生物化学 家庭医学 图书馆学 基因
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (4): 408-420 被引量:48
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助妍妍采纳,获得10
1秒前
任性的鼠标完成签到,获得积分10
2秒前
背完单词好睡觉完成签到 ,获得积分10
2秒前
wxf完成签到,获得积分10
3秒前
现代寄文发布了新的文献求助10
4秒前
科狸发布了新的文献求助10
4秒前
陈杰发布了新的文献求助10
4秒前
子云完成签到,获得积分10
6秒前
qiqi完成签到,获得积分10
6秒前
小羊完成签到,获得积分10
7秒前
8秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
上官若男应助科研通管家采纳,获得30
10秒前
鸣笛应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
Dada应助科研通管家采纳,获得10
10秒前
Dada应助科研通管家采纳,获得10
10秒前
鸣笛应助科研通管家采纳,获得30
10秒前
10秒前
紧张的毛衣完成签到,获得积分10
10秒前
11秒前
pei完成签到,获得积分10
11秒前
灵巧水绿应助小马采纳,获得10
11秒前
快乐的海亦完成签到,获得积分10
13秒前
领导范儿应助快乐的海亦采纳,获得10
15秒前
15秒前
冷傲的白卉完成签到,获得积分10
15秒前
zeno123456完成签到,获得积分10
15秒前
可爱的函函应助文耳东采纳,获得10
16秒前
归海若风发布了新的文献求助10
16秒前
17秒前
19秒前
Lucas应助liuzengzhang666采纳,获得10
20秒前
20秒前
chaoran发布了新的文献求助10
22秒前
苗一夫发布了新的文献求助10
23秒前
23秒前
kyt发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717