已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 基因 生物化学 发展心理学 图书馆学 家庭医学
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 408-420 被引量:68
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
忧伤的向日葵应助糖糖采纳,获得10
3秒前
李健应助杨红云采纳,获得10
3秒前
jiyang完成签到,获得积分10
3秒前
kiki发布了新的文献求助10
3秒前
沙翠风发布了新的文献求助10
4秒前
WEILAI完成签到 ,获得积分10
4秒前
邓豪完成签到 ,获得积分10
4秒前
领导范儿应助机智的凡梦采纳,获得10
4秒前
Su发布了新的文献求助10
5秒前
彭于晏应助namelorna采纳,获得10
5秒前
奔奔发布了新的文献求助10
6秒前
7秒前
7秒前
oaa完成签到,获得积分10
10秒前
沙翠风完成签到,获得积分10
13秒前
科研通AI6应助认真的白易采纳,获得10
13秒前
howky发布了新的文献求助30
13秒前
HL完成签到,获得积分10
14秒前
lw完成签到,获得积分10
15秒前
科研通AI6应助halo1004采纳,获得10
15秒前
16秒前
洁净的雪一完成签到 ,获得积分10
16秒前
开心完成签到,获得积分10
17秒前
Daisylee发布了新的文献求助10
21秒前
美满平松完成签到 ,获得积分10
21秒前
失眠的幻儿给失眠的幻儿的求助进行了留言
22秒前
23秒前
24秒前
25秒前
如来发布了新的文献求助10
25秒前
26秒前
庄冬丽发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644244
求助须知:如何正确求助?哪些是违规求助? 4763257
关于积分的说明 15024274
捐赠科研通 4802455
什么是DOI,文献DOI怎么找? 2567446
邀请新用户注册赠送积分活动 1525227
关于科研通互助平台的介绍 1484666