亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 发展心理学 生物化学 家庭医学 图书馆学 基因
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 408-420 被引量:40
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
宝字盖发布了新的文献求助10
9秒前
汉堡包应助宝字盖采纳,获得10
13秒前
wujuan完成签到 ,获得积分10
14秒前
19秒前
qwdqw发布了新的文献求助10
23秒前
qwdqw完成签到,获得积分10
31秒前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
爱静静应助苗条绝义采纳,获得30
3分钟前
3分钟前
3分钟前
童念之发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
Georgechan完成签到,获得积分10
3分钟前
3分钟前
懦弱的寄琴完成签到 ,获得积分10
4分钟前
唉呀妈呀发布了新的文献求助100
4分钟前
爱静静应助苗条绝义采纳,获得30
4分钟前
4分钟前
yaoyaoyao完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
清脆如娆完成签到 ,获得积分10
6分钟前
6分钟前
宝字盖发布了新的文献求助10
6分钟前
6分钟前
7分钟前
8分钟前
爱静静完成签到,获得积分0
8分钟前
浠苒发布了新的文献求助10
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412594
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878