Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 发展心理学 生物化学 家庭医学 图书馆学 基因
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 408-420 被引量:40
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
daxia9527应助独特的叫兽采纳,获得30
1秒前
Tony12发布了新的文献求助20
1秒前
3秒前
FashionBoy应助西北望采纳,获得10
3秒前
6秒前
7秒前
李健应助TIGun采纳,获得10
8秒前
8秒前
wzy5508发布了新的文献求助10
10秒前
10秒前
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
彩色映雁发布了新的文献求助10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
急急国王应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
Yiy应助科研通管家采纳,获得10
11秒前
丰知然应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
温暖的铅笔关注了科研通微信公众号
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
12秒前
Hoijuon发布了新的文献求助10
12秒前
Erica完成签到,获得积分10
13秒前
15秒前
15秒前
Ting发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
18秒前
高高初柔发布了新的文献求助10
20秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433815
求助须知:如何正确求助?哪些是违规求助? 3030979
关于积分的说明 8940427
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689331
邀请新用户注册赠送积分活动 685455