Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

可解释性 医学 概化理论 深度学习 生物标志物发现 生物标志物 人工智能 癌症 机器学习 探路者 临床实习 生物信息学 计算机科学 内科学 心理学 蛋白质组学 生物 基因 生物化学 发展心理学 图书馆学 家庭医学
作者
Junhao Liang,Weisheng Zhang,Jianghui Yang,Meilong Wu,Qionghai Dai,Hongfang Yin,Ying Xiao,Lingjie Kong
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (4): 408-420 被引量:68
标识
DOI:10.1038/s42256-023-00635-3
摘要

Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities. The potential of deep learning in pathological prognosis has been hampered by limited interpretability in clinical applications. Liang and colleagues present a human-centric deep learning framework that supports the discovery of prognostic biomarkers in an interpretable way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助accept采纳,获得30
1秒前
且慢发布了新的文献求助10
1秒前
1秒前
知世耶完成签到 ,获得积分10
1秒前
嗡嗡嗡发布了新的文献求助10
2秒前
2秒前
AN发布了新的文献求助10
3秒前
吱吱发布了新的文献求助10
3秒前
爱笑的珩发布了新的文献求助10
5秒前
5秒前
彳亍宣发布了新的文献求助10
5秒前
10秒前
10秒前
唐宇欣完成签到,获得积分10
10秒前
10秒前
吴1完成签到,获得积分10
11秒前
12秒前
dafu发布了新的文献求助10
12秒前
12秒前
LAN0528发布了新的文献求助10
13秒前
14秒前
西西发布了新的文献求助10
14秒前
AN完成签到,获得积分10
15秒前
科研狗发布了新的文献求助10
15秒前
CipherSage应助拒绝去偏旁采纳,获得10
15秒前
伶俐以彤发布了新的文献求助20
16秒前
落后丸子发布了新的文献求助10
17秒前
帆320完成签到,获得积分10
17秒前
17秒前
18秒前
夏天完成签到,获得积分10
18秒前
852应助甜美翠安采纳,获得10
19秒前
linyu发布了新的文献求助10
19秒前
微笑妖丽发布了新的文献求助10
20秒前
英俊的铭应助perdgs采纳,获得10
21秒前
醉熏的奇异果完成签到,获得积分10
21秒前
SciGPT应助帆320采纳,获得10
21秒前
隐形曼青应助dafu采纳,获得10
21秒前
Ice完成签到,获得积分10
22秒前
行周发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241