计算机科学
突出
人工智能
水准点(测量)
像素
边界(拓扑)
编码器
对象(语法)
特征(语言学)
计算机视觉
目标检测
特征学习
自编码
模式识别(心理学)
深度学习
遥感
地质学
数学
数学分析
语言学
哲学
大地测量学
操作系统
作者
Qingping Zheng,Ling Zheng,Yunpeng Bai,Huan Liu,Jiankang Deng,Ying Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:61: 1-13
被引量:6
标识
DOI:10.1109/tgrs.2023.3260825
摘要
Salient object detection is a binary pixel-wise classification to distinguish objects in an image, and also have attracted many research interests in the optical Remote Sensing Images (RSIs). The existing state-of-the-art method exploits the full encoder-decoder architecture to predict salient objects in the optical RSIs, suffering from the problem of unsmooth edges and incomplete structures. To address these problems, in this paper, we propose a Boundary-Aware Network (BANet) with two-stage partial decoders sharing the same encoders for salient object detection in RSIs. Specifically, a Boundary-Aware Partial Decoder (BAD) is introduced at the first stage to focus on learning clear edges of salient objects. To solve the pixel-imbalance problem between boundary and background, an edge-aware loss is proposed to guide learning the BAD network. The resulting features are then employed in turn to enhance high-level features. Afterwards, the Structure-Aware Partial Decoder (SAD) is further introduced at the second stage to improve the structure integrity of salient objects. To alleviate the problem of incomplete structures, the structural similarity loss is further proposed to supervise learning the SAD network. In a consequence, our proposed BANet can predict salient objects with clear edges and complete structure, while reducing model parameters due to the discardment of low-level features. Besides, training a deep neural network requires a large amount of images, and the current benchmark datasets for optical remote sensing images are not large enough. Therefore, we also create a large-scale challenging dataset for salient object detection in RSIs. Extensive experiments demonstrate that our proposed BANet outperforms previous RSI SOD models on all existing benchmark datasets and our new presented dataset available at https://github.com/QingpingZheng/RSISOD.
科研通智能强力驱动
Strongly Powered by AbleSci AI