颂歌
适应(眼睛)
消光(光学矿物学)
选择(遗传算法)
疾病
计算机科学
流行病模型
工作(物理)
特质
统计物理学
生物
应用数学
数学
人工智能
人口学
工程类
物理
医学
神经科学
人口
社会学
病理
古生物学
机械工程
程序设计语言
作者
Arnaud Ducrot,David Manceau,Ahmadou Sylla
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-08-11
卷期号:28 (3): 2011-2043
被引量:1
标识
DOI:10.3934/dcdsb.2022156
摘要
This work is devoted to the study of the spreading speed for a multi-dimensional reaction-diffusion equation coupled with a system of ODE, modelling the spatial propagation a plant disease epidemic. Here the pathogen is able to evolve in a phenotype trait space according to mutation-selection processes in order to adapt to the environment. Here we devise an epidemic threshold value, with respect to one, characterizes either the extinction or the propagation of the disease. We show that the phenotype adaptation decouples from the spatio-temporal dynamics in the large times. Moreover, in the endemic case, we also describe the spreading speed of the disease when an initial compactly supported amount of infection is introduced in the environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI