Diagnosing Alzheimer’s disease from on-line handwriting: A novel dataset and performance benchmarking

笔迹 计算机科学 标杆管理 情感(语言学) 疾病 协议(科学) 物理医学与康复 认知 人工智能 机器学习 医学 神经科学 心理学 病理 替代医学 沟通 营销 业务
作者
Nicole Dalia Cilia,Giuseppe De Gregorio,Claudio De Stefano,Francesco Fontanella,Angelo Marcelli,Antonio Parziale
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:111: 104822-104822 被引量:33
标识
DOI:10.1016/j.engappai.2022.104822
摘要

Neurodegenerative diseases are caused by the progressive degeneration of nerve cells that affect motor skills and cognitive abilities with increasing severity. Unfortunately, there is no cure for this type of disease and their impact can only be slowed down with specific pharmacological and rehabilitative therapies. Early diagnosis, therefore, remains the primary means to delay brain damage and improve the quality of life of people affected. Neurodegenerative diseases also affect movement fine control. Consequently, the analysis of handwriting dynamics can represent an effective tool to support an early diagnosis of these diseases. While many methods have been proposed in the literature based on the use of a wide range of handwriting tasks, researchers have not yet defined a universally accepted standard experimental protocol to collect data. Furthermore, although some databases containing handwriting data have been produced, only a few of them were designed specifically for research on neurodegenerative diseases, and, in most cases, they involve a small number of participants performing a few tasks. Here, we introduce the DARWIN (Diagnosis AlzheimeR WIth haNdwriting) dataset to overcome these drawbacks, which contains handwriting samples from people affected by Alzheimer’s and a control group. The dataset includes data from 174 participants, acquired during the execution of handwriting tasks, performed according to a protocol specifically designed for the early detection of Alzheimer’s. We report the results of the experiments performed to evaluate the effectiveness of the proposed tasks and features in capturing the distinctive aspects of handwriting that support the diagnosis of Alzheimer’s disease. • We introduce the DARWIN dataset (Diagnosis AlzheimeR WIth haNdwriting). • The dataset contains handwriting data from people affected by Alzheimer’s. • The dataset is the largest publicly available in terms of number of participants and tasks. • We investigated the effectiveness of the proposed tasks and the features extracted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
nnnkkl完成签到,获得积分10
8秒前
tang完成签到,获得积分10
9秒前
thedaik21发布了新的文献求助10
10秒前
huyulele完成签到,获得积分10
11秒前
matcha关注了科研通微信公众号
16秒前
NexusExplorer应助小元同学采纳,获得10
16秒前
Ehgnix完成签到,获得积分10
23秒前
Lan完成签到 ,获得积分10
29秒前
00000000完成签到,获得积分10
32秒前
听话的蜡烛完成签到,获得积分10
32秒前
Ava应助博修采纳,获得10
36秒前
石忆完成签到,获得积分10
37秒前
40秒前
伶俐的高烽完成签到 ,获得积分10
41秒前
科研通AI5应助信号灯采纳,获得10
46秒前
orixero应助hihi采纳,获得10
46秒前
00000000发布了新的文献求助10
46秒前
打打应助科研通管家采纳,获得10
47秒前
大模型应助科研通管家采纳,获得10
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
桐桐应助科研通管家采纳,获得20
47秒前
47秒前
FashionBoy应助科研通管家采纳,获得10
47秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
47秒前
乐小子完成签到,获得积分10
48秒前
redamancy完成签到 ,获得积分10
49秒前
hululu完成签到 ,获得积分10
54秒前
54秒前
55秒前
56秒前
CSY1130完成签到,获得积分10
58秒前
xiangyu完成签到,获得积分10
1分钟前
冷艳凌晴发布了新的文献求助20
1分钟前
1分钟前
xiuxiu_27完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675375
求助须知:如何正确求助?哪些是违规求助? 3230256
关于积分的说明 9789329
捐赠科研通 2941120
什么是DOI,文献DOI怎么找? 1612330
邀请新用户注册赠送积分活动 761072
科研通“疑难数据库(出版商)”最低求助积分说明 736614