Diagnosing Alzheimer’s disease from on-line handwriting: A novel dataset and performance benchmarking

笔迹 计算机科学 标杆管理 情感(语言学) 疾病 协议(科学) 物理医学与康复 认知 人工智能 机器学习 医学 神经科学 心理学 病理 替代医学 沟通 营销 业务
作者
Nicole Dalia Cilia,Giuseppe De Gregorio,Claudio De Stefano,Francesco Fontanella,Angelo Marcelli,Antonio Parziale
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:111: 104822-104822 被引量:5
标识
DOI:10.1016/j.engappai.2022.104822
摘要

Neurodegenerative diseases are caused by the progressive degeneration of nerve cells that affect motor skills and cognitive abilities with increasing severity. Unfortunately, there is no cure for this type of disease and their impact can only be slowed down with specific pharmacological and rehabilitative therapies. Early diagnosis, therefore, remains the primary means to delay brain damage and improve the quality of life of people affected. Neurodegenerative diseases also affect movement fine control. Consequently, the analysis of handwriting dynamics can represent an effective tool to support an early diagnosis of these diseases. While many methods have been proposed in the literature based on the use of a wide range of handwriting tasks, researchers have not yet defined a universally accepted standard experimental protocol to collect data. Furthermore, although some databases containing handwriting data have been produced, only a few of them were designed specifically for research on neurodegenerative diseases, and, in most cases, they involve a small number of participants performing a few tasks. Here, we introduce the DARWIN (Diagnosis AlzheimeR WIth haNdwriting) dataset to overcome these drawbacks, which contains handwriting samples from people affected by Alzheimer’s and a control group. The dataset includes data from 174 participants, acquired during the execution of handwriting tasks, performed according to a protocol specifically designed for the early detection of Alzheimer’s. We report the results of the experiments performed to evaluate the effectiveness of the proposed tasks and features in capturing the distinctive aspects of handwriting that support the diagnosis of Alzheimer’s disease. • We introduce the DARWIN dataset (Diagnosis AlzheimeR WIth haNdwriting). • The dataset contains handwriting data from people affected by Alzheimer’s. • The dataset is the largest publicly available in terms of number of participants and tasks. • We investigated the effectiveness of the proposed tasks and the features extracted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然天问完成签到 ,获得积分10
刚刚
聪明飞飞完成签到,获得积分10
1秒前
欢呼的幻丝完成签到 ,获得积分10
1秒前
资诗蕊完成签到,获得积分10
2秒前
NexusExplorer应助屈初雪采纳,获得10
2秒前
坛子完成签到,获得积分10
4秒前
德德完成签到,获得积分10
5秒前
hooke完成签到,获得积分10
6秒前
跳跃的凝安关注了科研通微信公众号
7秒前
8秒前
豆豆完成签到 ,获得积分10
8秒前
10秒前
小二郎应助田野采纳,获得20
11秒前
12秒前
土豆丝发布了新的文献求助10
12秒前
Lucas应助如意歌曲采纳,获得10
12秒前
13秒前
14秒前
14秒前
15秒前
郭娅楠完成签到 ,获得积分10
15秒前
15秒前
欢喜发卡发布了新的文献求助10
17秒前
钮祜lu发布了新的文献求助10
17秒前
李李李李发布了新的文献求助20
18秒前
Dave发布了新的文献求助10
18秒前
1111发布了新的文献求助10
18秒前
giucher完成签到 ,获得积分10
18秒前
19秒前
小闫发布了新的文献求助10
19秒前
124cndhaP发布了新的文献求助10
20秒前
斯文败类应助让我乔乔采纳,获得10
22秒前
yang发布了新的文献求助10
22秒前
燕燕完成签到 ,获得积分10
22秒前
土豆丝完成签到,获得积分10
23秒前
肾小球呵呵完成签到,获得积分10
25秒前
25秒前
Sasap完成签到,获得积分20
25秒前
29秒前
peng发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655