Parameter-by-parameter method for steric mass action model of ion exchange chromatography: Theoretical considerations and experimental verification

化学 生物系统 校准 线性回归 色谱法 稳健性(进化) 算法 数学 统计 生物化学 生物 基因
作者
Yucheng Chen,Shan‐Jing Yao,Dong‐Qiang Lin
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1680: 463418-463418 被引量:18
标识
DOI:10.1016/j.chroma.2022.463418
摘要

Ion exchange chromatography (IEC) is one of the most widely-used techniques for protein separation and has been characterized by mechanistic models. However, the time-consuming and cumbersome model calibration hinders the application of mechanistic models for process development. A new methodology called "parameter-by-parameter method (PbP)" was proposed with mechanistic derivations of the steric mass action (SMA) model of IEC. The protocol includes four steps: (1) first linear regression (LR1) for characteristic charge; (2) second linear regression (LR2) for equilibrium coefficient; (3) linear approximation (LA) for shielding factor; (4) inverse method (IM) for kinetic coefficient. Four SMA parameters could be one-by-one determined in sequence, reducing the number of unknown parameters per species from four to one, and predicting almost consistent retention. Numerical single-component experiments were investigated firstly, and the PbP method showed excellent agreement between experiments and simulations. The effects of loadings on the PbP and Yamamoto methods were compared. It was found that the PbP method had higher accuracy and robustness than the Yamamoto method. Moreover, a five-experiment strategy was suggested to implement the PbP method, which is straightforward to reduce the cost of calibration experiments. Finally, a real-world multi-component separation was challenged and further confirmed the feasibility of the PbP method. In general, the proposed method can not only reliably estimate the SMA parameters with comprehensive physical understanding but also accurately predict retention over a wide range of loading conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助SCIAI采纳,获得10
1秒前
numie完成签到,获得积分10
2秒前
abcdefg发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
yiyi发布了新的文献求助30
5秒前
思源应助1111采纳,获得10
5秒前
5秒前
6秒前
numie发布了新的文献求助10
6秒前
pikachu发布了新的文献求助10
8秒前
标致的蹇完成签到,获得积分20
9秒前
HH完成签到,获得积分10
9秒前
9秒前
无花果应助鱼鱼采纳,获得10
10秒前
11秒前
11秒前
小AB发布了新的文献求助10
13秒前
大模型应助文静元风采纳,获得10
14秒前
orixero应助1huiqina采纳,获得10
14秒前
14秒前
华仔应助爱炸串的猫采纳,获得10
14秒前
无奈的鹤完成签到,获得积分10
14秒前
14秒前
赵一丁完成签到,获得积分10
15秒前
Myy完成签到 ,获得积分10
15秒前
16秒前
16秒前
yiyi完成签到,获得积分10
16秒前
16秒前
平常无颜发布了新的文献求助10
16秒前
16秒前
星辰大海应助Winkhl采纳,获得10
16秒前
吴昕奕发布了新的文献求助10
17秒前
K. G.完成签到,获得积分0
17秒前
无花果应助gyx采纳,获得10
19秒前
gaodayu发布了新的文献求助10
19秒前
yar应助飘123采纳,获得10
20秒前
小火孩发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304868
求助须知:如何正确求助?哪些是违规求助? 2938834
关于积分的说明 8490078
捐赠科研通 2613283
什么是DOI,文献DOI怎么找? 1427315
科研通“疑难数据库(出版商)”最低求助积分说明 662925
邀请新用户注册赠送积分活动 647557