Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis

医学 假阳性悖论 工作流程 人工智能 梅德林 放射科 神经组阅片室 医学物理学 机器学习 神经学 计算机科学 政治学 数据库 精神科 法学
作者
Stavros Matsoukas,Jacopo Scaggiante,Braxton R Schuldt,Colton Smith,Susmita Chennareddy,Roshini Kalagara,Shahram Majidi,Joshua B. Bederson,Johanna T Fifi,J Mocco,Christopher P. Kellner
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:127 (10): 1106-1123 被引量:14
标识
DOI:10.1007/s11547-022-01530-4
摘要

Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance.In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans.In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives.Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions. REGISTRATION-URL: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
田镓栋发布了新的文献求助10
1秒前
Yolen LI完成签到,获得积分0
2秒前
cobo完成签到,获得积分10
2秒前
xiaoguo发布了新的文献求助10
3秒前
3秒前
5秒前
LisA__发布了新的文献求助10
5秒前
金角大王完成签到,获得积分10
6秒前
也无风雨也无晴完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
hsa_ID发布了新的文献求助10
8秒前
Justtry发布了新的文献求助10
9秒前
Flowey完成签到,获得积分20
10秒前
丘比特应助fortune采纳,获得10
11秒前
田镓栋完成签到,获得积分10
11秒前
greatsnow发布了新的文献求助10
12秒前
白开水完成签到,获得积分10
12秒前
12秒前
13秒前
guozizi发布了新的文献求助30
13秒前
xiaoguo完成签到,获得积分20
13秒前
华仔应助yoyo采纳,获得10
14秒前
熊儒恒完成签到,获得积分10
15秒前
15秒前
魏强发布了新的文献求助10
18秒前
18秒前
理躺丁真完成签到,获得积分10
19秒前
Criminology34应助赶路人采纳,获得10
19秒前
20秒前
zeannezg发布了新的文献求助10
21秒前
Dun完成签到,获得积分10
23秒前
23秒前
zyt完成签到,获得积分10
23秒前
25秒前
25秒前
atterct完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
25秒前
weiboo发布了新的文献求助10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153393
求助须知:如何正确求助?哪些是违规求助? 4348981
关于积分的说明 13540659
捐赠科研通 4191526
什么是DOI,文献DOI怎么找? 2299002
邀请新用户注册赠送积分活动 1298954
关于科研通互助平台的介绍 1243960