重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis

医学 假阳性悖论 工作流程 人工智能 梅德林 放射科 神经组阅片室 医学物理学 机器学习 神经学 计算机科学 政治学 数据库 精神科 法学
作者
Stavros Matsoukas,Jacopo Scaggiante,Braxton R Schuldt,Colton Smith,Susmita Chennareddy,Roshini Kalagara,Shahram Majidi,Joshua B. Bederson,Johanna T Fifi,J Mocco,Christopher P. Kellner
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (10): 1106-1123 被引量:14
标识
DOI:10.1007/s11547-022-01530-4
摘要

Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance.In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans.In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives.Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions. REGISTRATION-URL: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66发布了新的文献求助10
刚刚
zhj完成签到,获得积分10
刚刚
冰柠檬发布了新的文献求助10
1秒前
tyyyyyy发布了新的文献求助10
1秒前
duran完成签到,获得积分10
1秒前
jinze完成签到,获得积分10
1秒前
ding应助wz采纳,获得10
2秒前
Fool完成签到,获得积分20
2秒前
汉堡包应助破晓采纳,获得10
2秒前
WangY1263发布了新的文献求助10
2秒前
2秒前
超帅鸭子发布了新的文献求助10
3秒前
禾研发布了新的文献求助20
3秒前
yisen完成签到,获得积分10
3秒前
搜集达人应助黄启烽采纳,获得10
4秒前
坐标发布了新的文献求助10
4秒前
5秒前
酷波er应助Gasoline.采纳,获得10
5秒前
Hello应助浊酒采纳,获得10
5秒前
5秒前
6秒前
Vera完成签到,获得积分10
6秒前
芃芃野发布了新的文献求助30
6秒前
科研通AI6应助仙妮宝贝采纳,获得10
6秒前
ggg完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
intfrac完成签到,获得积分10
7秒前
海绵宝宝的做饭铲完成签到,获得积分10
8秒前
科研通AI6应助雪白的友安采纳,获得10
8秒前
9秒前
深情安青应助无足鸟采纳,获得10
9秒前
情怀应助做锤子的医学采纳,获得10
9秒前
猫儿发布了新的文献求助10
9秒前
温可可发布了新的文献求助10
10秒前
LILI2完成签到,获得积分10
10秒前
慕青应助风清扬采纳,获得10
10秒前
飞快的雁发布了新的文献求助10
10秒前
研友_nVqwxL发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612