Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis

医学 假阳性悖论 工作流程 人工智能 梅德林 放射科 神经组阅片室 医学物理学 机器学习 神经学 计算机科学 政治学 数据库 精神科 法学
作者
Stavros Matsoukas,Jacopo Scaggiante,Braxton R Schuldt,Colton Smith,Susmita Chennareddy,Roshini Kalagara,Shahram Majidi,Joshua B. Bederson,Johanna T Fifi,J Mocco,Christopher P. Kellner
出处
期刊:Radiologia Medica [Springer Science+Business Media]
卷期号:127 (10): 1106-1123 被引量:14
标识
DOI:10.1007/s11547-022-01530-4
摘要

Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance.In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans.In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives.Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions. REGISTRATION-URL: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助SIDEsss采纳,获得10
刚刚
drjim发布了新的文献求助10
刚刚
刚刚
吴圳发布了新的文献求助10
刚刚
飞翔的霸天哥应助WLWLW采纳,获得30
1秒前
Maestro_S应助jyyg采纳,获得10
1秒前
不愿透露姓名科研人完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助joruruo采纳,获得10
1秒前
nancyshine完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
liuqizong123完成签到,获得积分10
3秒前
东晓完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
科研通AI5应助kk采纳,获得10
5秒前
叶子发布了新的文献求助10
5秒前
xubee发布了新的文献求助10
5秒前
随心发布了新的文献求助10
5秒前
xiaobai完成签到,获得积分10
5秒前
6秒前
深情安青应助友好的半仙采纳,获得10
6秒前
NexusExplorer应助lss采纳,获得10
7秒前
7秒前
7秒前
额度发布了新的文献求助10
8秒前
研友_89jWGL发布了新的文献求助10
8秒前
8秒前
小姜醒醒完成签到,获得积分10
8秒前
畅快山兰发布了新的文献求助10
8秒前
清脆半邪发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
西呱呱发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426