亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Epidermal piezoresistive structure with deep learning-assisted data translation

深度学习 计算机科学 人工智能 触觉传感器 回归 感觉系统 人工神经网络 刺激(心理学) 回归分析 机器学习 模式识别(心理学) 数学 统计 神经科学 认知心理学 生物 机器人 心理学
作者
Changrok So,Jong Uk Kim,Haiwen Luan,Sang Uk Park,Hyochan Kim,Seungyong Han,Doyoung Kim,Changhwan Shin,Tae‐il Kim,Wi Hyoung Lee,Yoonseok Park,Keun Heo,Hyoung Won Baac,Jong Hwan Ko,Sang Min Won
出处
期刊:npj flexible electronics [Springer Nature]
卷期号:6 (1) 被引量:9
标识
DOI:10.1038/s41528-022-00200-9
摘要

Abstract Continued research on the epidermal electronic sensor aims to develop sophisticated platforms that reproduce key multimodal responses in human skin, with the ability to sense various external stimuli, such as pressure, shear, torsion, and touch. The development of such applications utilizes algorithmic interpretations to analyze the complex stimulus shape, magnitude, and various moduli of the epidermis, requiring multiple complex equations for the attached sensor. In this experiment, we integrate silicon piezoresistors with a customized deep learning data process to facilitate in the precise evaluation and assessment of various stimuli without the need for such complexities. With the ability to surpass conventional vanilla deep regression models, the customized regression and classification model is capable of predicting the magnitude of the external force, epidermal hardness and object shape with an average mean absolute percentage error and accuracy of <15 and 96.9%, respectively. The technical ability of the deep learning-aided sensor and the consequent accurate data process provide important foundations for the future sensory electronic system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Demon724完成签到,获得积分10
4秒前
htc1996完成签到,获得积分10
7秒前
lin完成签到 ,获得积分10
13秒前
牛油果完成签到,获得积分10
17秒前
29秒前
30秒前
TJ发布了新的文献求助10
36秒前
kekeke777完成签到 ,获得积分10
36秒前
TEMPO发布了新的文献求助10
36秒前
oleskarabach发布了新的文献求助10
36秒前
38秒前
Ru完成签到 ,获得积分10
42秒前
TEMPO完成签到,获得积分10
43秒前
充电宝应助科研通管家采纳,获得10
44秒前
归去来兮应助科研通管家采纳,获得10
44秒前
CipherSage应助科研通管家采纳,获得10
44秒前
维奈克拉应助科研通管家采纳,获得20
44秒前
44秒前
49秒前
51秒前
58秒前
George完成签到,获得积分10
1分钟前
陈文学完成签到,获得积分10
1分钟前
1分钟前
情红锐完成签到,获得积分10
1分钟前
陈文学发布了新的文献求助10
1分钟前
1分钟前
今后应助情红锐采纳,获得10
1分钟前
大恐龙的噗噗完成签到,获得积分10
1分钟前
Sunziy完成签到,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
cy完成签到 ,获得积分10
1分钟前
1分钟前
肉肉完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
meimei完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639533
求助须知:如何正确求助?哪些是违规求助? 4748853
关于积分的说明 15006598
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563735
邀请新用户注册赠送积分活动 1522691
关于科研通互助平台的介绍 1482394