膜
复合数
环糊精
离子液体
化学
组合化学
材料科学
化学工程
色谱法
有机化学
复合材料
生物化学
工程类
催化作用
作者
Xin Qiu,Jian Ke,Wenbei Chen,Huixian Liu,Xiaoping Bai,Yibing Ji,Jianqiu Chen
标识
DOI:10.1016/j.memsci.2022.120870
摘要
With the development of pharmaceutical field, the demand for single enantiomer drugs is gradually increasing. Recently, chiral membrane separation technology has great potential in the field of enantioseparation due to its simple preparation, continuous operation and easy scale-up. In this study, a novel β-cyclodextrin-ionic liquid thin film composite membrane (β-CD-IL TFCM) was fabricated by interfacial polymerization method to achieve the enantioseparation of chiral drugs. Various fabrication conditions of the membrane were optimized with tryptophan as a model molecule to improve its enantioselectivity. Under optimal fabrication conditions, the percent enantiomeric excess (e.e.%) of tryptophan was 100.0% and the solute flux (J S ) was 8.0 nmol cm −2 h −1 . Enantioseparation of various chiral drugs was achieved using β-CD-IL TFCM, including propranolol (e.e.% = 73.4%), warfarin (e.e.% = 11.4%), metoprolol (e.e.% = 3.4%), ibuprofen (e.e.% = 17.8%) and terbutaline (e.e.% = 3.3%). In addition, molecular docking simulation was applied to investigate the separation mechanism of chiral drugs, demonstrating that multiple interactions promote the separation of drug enantiomers. These results reveal the excellent enantioseparation performance of β-CD-IL TFCM, which has a wide prospect in realizing industrial application of chiral membranes. • Novel β-CD-IL TFCM was designed and fabricated by interfacial polymerization. • The membrane performed excellent enantioselectivity and permeability. • Optical separations of propranolol, ibuprofen and warfarin were achieved. • The chiral recognition mechanism was investigated by molecular docking simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI