Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives

对映体 生物分子 手性(物理) 化学 分子识别 毛细管电泳 电化学 纳米技术 组合化学 电极 分子 有机化学 材料科学 色谱法 物理 物理化学 手征对称破缺 量子力学 夸克 Nambu–Jona Lasinio模型 生物化学
作者
Jiao Zou,Guoqing Zhao,Guoling Zhao,Jin‐Gang Yu
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:471: 214732-214732 被引量:48
标识
DOI:10.1016/j.ccr.2022.214732
摘要

Chiral recognition, especially rendering specificity in biomolecular recognition, is a basic property of many biomolecules. Being closely related to the chirality of biomolecules, it has been regarded as one of the most important areas in biological and medical sciences due to the different effects in biological systems. Based on the possible interactions between chiral selectors and the enantiomers, various methods including chromatographic techniques such as gas or liquid chromatography, electromigration techniques such as capillary electrophoresis and so on were developed for the chiral separation and recognition of different optical isomers. Recently, chemical sensors and biosensors have been gradually designed and developed for the analysis of chiral compounds. Based on the difference in electrical response to different isomers, chiral identifications can be successfully implemented. Major successes in enantiomer recognition based on electrochemical analysis are reviewed. The research data available for highly enantio-selective recognition are categorized into several subgroups according to specific topics and critically discussed for the period since 1994, and the latest techniques for electrochemical chiral recognition of enantiomers were also reviewed. Simultaneously, a brief conclusive summary and future perspectives are presented, and the challenges and scientific prospects of the newest generation of electrode modifiers in electrochemical sensing are also proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
步行街车神ahua完成签到,获得积分10
刚刚
tf发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
22222完成签到,获得积分10
1秒前
Turbo发布了新的文献求助10
2秒前
NexusExplorer应助薄荷采纳,获得10
2秒前
2秒前
3秒前
李健应助张潇潇采纳,获得10
4秒前
泪是雨的旋律完成签到 ,获得积分10
4秒前
5秒前
Rabbit发布了新的文献求助10
5秒前
ll完成签到 ,获得积分10
5秒前
woaikeyan完成签到 ,获得积分10
5秒前
xuuuuu发布了新的文献求助10
5秒前
脑洞疼应助科研小弟采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
6秒前
羽客发布了新的文献求助200
7秒前
田様应助执行正义采纳,获得10
7秒前
搜集达人应助EoGangPe采纳,获得10
7秒前
涨涨涨发布了新的文献求助10
7秒前
研友_5Z46A5完成签到,获得积分10
7秒前
坤坤发布了新的文献求助10
8秒前
8秒前
椎名hirofumi完成签到,获得积分10
8秒前
71完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
科研通AI6应助虚幻谷波采纳,获得10
10秒前
10秒前
杨胖胖完成签到,获得积分10
10秒前
12秒前
悦耳的三毒完成签到 ,获得积分10
12秒前
12秒前
Peter完成签到,获得积分10
12秒前
14秒前
舒适的傲柔完成签到,获得积分10
14秒前
彭于晏应助珂珂采纳,获得10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742