Morphometric Integrated Classification Index: A Multisite Model-Based, Interpretable, Shareable and Evolvable Biomarker for Schizophrenia

作者
Yingying Xie,Hao Ding,Xiaotong Du,Chao Chai,Xiaotong Wei,Jie Sun,Chuanjun Zhuo,Lina Wang,Jie Li,Hongjun Tian,Meng Liang,Shijie Zhang,Chunshui Yu,Wen Qin
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
标识
DOI:10.1093/schbul/sbac096
摘要

Abstract Background and Hypothesis Multisite massive schizophrenia neuroimaging data sharing is becoming critical in understanding the pathophysiological mechanism and making an objective diagnosis of schizophrenia; it remains challenging to obtain a generalizable and interpretable, shareable, and evolvable neuroimaging biomarker for schizophrenia diagnosis. Study Design A Morphometric Integrated Classification Index (MICI) was proposed as a potential biomarker for schizophrenia diagnosis based on structural magnetic resonance imaging data of 1270 subjects from 10 sites (588 schizophrenia patients and 682 normal controls). An optimal XGBoost classifier plus sample-weighted SHapley Additive explanation algorithms were used to construct the MICI measure. Study Results The MICI measure achieved comparable performance with the sample-weighted ensembling model and merged model based on raw data (Delong test, P > 0.82) while outperformed the single-site models (Delong test, P < 0.05) in either the independent-sample testing datasets from the 9 sites or the independent-site dataset (generalizable). Besides, when new sites were embedded in, the performance of this measure was gradually increasing (evolvable). Finally, MICI was strongly associated with the severity of schizophrenia brain structural abnormality, with the patients’ positive and negative symptoms, and with the brain expression profiles of schizophrenia risk genes (interpretable). Conclusions In summary, the proposed MICI biomarker may provide a simple and explainable way to support clinicians for objectively diagnosing schizophrenia. Finally, we developed an online model share platform to promote biomarker generalization and provide free individual prediction services (http://micc.tmu.edu.cn/mici/index.html).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牙膏完成签到 ,获得积分10
刚刚
Ava应助哒哒哒采纳,获得10
刚刚
美满的念云完成签到,获得积分10
1秒前
1秒前
mingga完成签到,获得积分10
2秒前
动漫大师发布了新的文献求助10
3秒前
3秒前
科研通AI5应助清脆平安采纳,获得10
3秒前
lulu发布了新的文献求助10
4秒前
激昂的紫烟完成签到,获得积分10
4秒前
4秒前
4秒前
坦率抽屉完成签到 ,获得积分10
5秒前
沐沐完成签到,获得积分10
5秒前
7秒前
Dean发布了新的文献求助10
7秒前
8秒前
科大鲨鱼完成签到,获得积分10
8秒前
8秒前
雪飞杨完成签到 ,获得积分10
9秒前
SciGPT应助lulu采纳,获得10
9秒前
伍美华完成签到,获得积分10
10秒前
wei完成签到,获得积分0
10秒前
11秒前
11秒前
11秒前
Ava应助既温柔采纳,获得10
13秒前
13秒前
13秒前
哒哒哒发布了新的文献求助10
14秒前
甜甜的满天完成签到,获得积分10
15秒前
15秒前
科大鲨鱼发布了新的文献求助10
15秒前
科大鲨鱼发布了新的文献求助10
15秒前
科大鲨鱼发布了新的文献求助10
15秒前
追寻的小甜瓜完成签到,获得积分20
17秒前
楠楠2001发布了新的文献求助10
18秒前
希望天下0贩的0应助66采纳,获得10
18秒前
Lucas应助MMP采纳,获得30
19秒前
19秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714108
求助须知:如何正确求助?哪些是违规求助? 3261646
关于积分的说明 9920002
捐赠科研通 2975430
什么是DOI,文献DOI怎么找? 1631536
邀请新用户注册赠送积分活动 774066
科研通“疑难数据库(出版商)”最低求助积分说明 744633